Lecture-01: Random Variables and Entropy

1 Random Variables

Our main focus will be on the behavior of large sets of discrete random variables.

Definition 1.1. A discrete random variable, X, is defined by following information: (i) X : the finite set of
values that it may take, (ii) px : X — [0,1]: the probability it takes each value x € X . Of course, the proba-
bility distribution px must satisfy the normalization condition }_,c x px(x) = 1. If there is no ambiguity, we
may use p(x) to denote px(x).

Example 1.2. Let the random variable X denote the sum of two fair 6-sided dice. Then, X ={2,3,...,12}

and 67 |
—|7—x
px(x) = 36

Definition 1.3. An event A C X is a subset of values. The probability of an event is denoted

P(XeA)=P(A) =) px(x)=) P(X=x).

xeA xeA

Also, an event is sometimes defined in words, A = “X is even’.

Example 1.4. If X is the sum of two fair 6-sided dice and A = “X is even’. Then,

g 1+3+5+5+3+1 1
P(X iseven) =P(A) = ) px(x) = = =5
x€A

Definition 1.5. For a discrete random variable, the expected value (or average) of f : X — R is denoted

E[f] =E[f(X)] = Zxr’x(X)f(X)-

Mathematically, E [] can be seen as a linear operator from the space of real functions on X to the set of real

numbers. Thus,
E[af(X) + bg(X)] = aE [f(X)] + bE [g(X)].

Example 1.6. If X is the sum of two fair 6-sided dice and f(x) = (x — 7)?, then

2(1-5*+2-424+3-32+4-22+5-1%) 105
E[(x-7?] = ¥ px(x)(x =72 = & - )1,
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Since the mean is [E [X] = 7, this actually equals the variance of X.



Definition 1.7. A continuous random variable, X, taking values on the set X = R? or in some smooth finite-
dimensional manifold is defined by its cumulative distribution function IP(X < x), where X < x is used to
denote X; < x; for i =1,...,d. For such a r.v., the probability measure with respect to the infinitesimal
element dx is denoted by dpx (x). For a measurable event A C X, this gives

P(XeA)= [ dpx(x)= [Leadpx(x),

where the indicator function 1 is 1 if the logical statement s is true and 0 otherwise. If px admits a density,
with respect to Lebesgue measure, then it will be denoted by px(x). In this case, we can write

P(XeA) = [ px(dr= [1pcapx(x)dx

Example 1.8. If X is a continuous random variable defined, for a,b € R with a < b, by

0 x<a
P(X<x)=4{3=% a<x<b
1 x>b,

then it is uniform on [a,b] and its density is given by px(x) = ﬁ]l {xe[a ]}

Definition 1.9. The expected value and variance of a function f : RY — R of a continuous random variable
X € R? are given by

E[f]=E[f(X)] = [ f(x)dpx(x
Var[f] = Var [f(X)] = E [ (f(X) —IE[f(X)])ﬂ = E [f(X)?] ~E[f(X)]".

Example 1.10. If X is a continuous random variable that is uniform on [, b], then its mean and variance
are given by
/b x V—a®> b+a
= dx = = 7
a b—a Z(b o a) 2

b2 b+a\? B —dd b+a\> _ (b—a)?
Varm_/a b—adx_< 2 > _S(b—a)_( 2 ) BT

2 Entropy

In statistical mechanics, the entropy is proportional to the logarithm of the number of resolvable microstates
associated with a macrostate. In classical mechanics, this quantity contains an arbitrary additive constant
associated with the size of a microstate that is considered resolvable. In quantum mechanics, there is a
natural limit to resolvability and this constant is related to the Planck constant. For random variables,
Shannon chose the following definition which is similar in spirit.

Definition 2.1. The entropy (in bits) of a discrete random variable X with probability distribution p(x) is

denoted .
S .
xgcp B2 px log, p(X)



where 0log, 0 = 0 by continuity. The notation H(p) is used to denote H(X) when X ~ p(x). When there
is no ambiguity, H will be used instead of H(X). The unit of entropy is determined by the base of the
logarithm with base-2 resulting in “bits” and the natural log (i.e., base-e) resulting in “nats”.

Remark 2.2. Roughly speaking, the entropy H(X) measures the uncertainty in the random variable X.

Example 2.3. If X is uniform, then p(x) = |17\ and

1
H(X)=E [log2 m] = log, | X|.

Choosing |X| = 2, we see that a uniform random bit has exactly log, 2 = 1 bit of entropy.

Example 2.4. Let X be a binary r.v. defined by p(0) =1 — g and p(1) = 4. In this case, we have
1 1
H(X)=H(q) = qlogzg + (1 —q)log, =g’

where H(q) is called the binary entropy function. This function is concave and symmetric about g = %
It also satisfies 7 (0) = H (1) =0and H(1/2) =1.

Example 2.5. The number of length-n binary sequences with exactly gn ones is given by ( q"n). Using
Stirling’s formula, n! = v27n(2)"(1 + O(1), we see that

(qn) = =) n)!
B 2rn(2)"(1+0(1)

V2= ) (M) (1 + O(55) 2man(2)n(1+ O()

- T (1 (=)

Remark 2.6. This shows that the binary entropy determines the exponential growth rate of the number
of binary sequences with a fixed fraction of ones. In fact, this is a fundamental property of the entropy.
More generally, we will see that the entropy H(X) is the exponential growth rate of the number of length-n
sequences (i.e., there are roughly 2" (X) such sequences) where the fraction of x’s converges to np(x). This
also implies that nH(X) is essentially equal to the minimum number of binary digits required to index all
length-n sequences of this type.

Lemma 2.7. Basic properties of entropy:
1. (non-negativity) H(X) > 0 with equality iff X is constant.
Proof. If X is not constant, there is an xo € X with p(xg) € (0,1). Thus,

H(X) > p(x0)logy(1/ p(x0)) > 0.



2. (decomposition rule) For any partition A = (A1, Ay, ..., Am) of X, we have

m

H(p) = H(pa) + ;P(Ai)H(Pi)r

where we define pa(i) = p(A;) = Lyea, p(x) fori € [m] and p;(x) = pp((j‘?) for x € A;.

Proof. Observe that

Example 2.8. Compute the entropy of the distribution p(x) = [0.125 0.375 0.25 0.25]. Using de-
composition with Ay = {1,2} and A, = {3,4}, we get

H(p) =1+ 05H(1/4) + 0.5 ~ 1.9056.
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