Lecture-02: Mutual Information

1 Mutual Information

Definition 1.1. The joint entropy (in bits) of a pair of r.v. (X,Y) ~ px y(x,y) is denoted
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Notice that this is identical to H(Z) with Z = (X,Y).

Definition 1.2. For a pair of r.v. (X,Y) ~ px y(x,v), the conditional entropy (in bits) of Y given X is denoted
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Notice that this equals entropy of the conditional distribution py|x (y|x) averaged over x.

Definition 1.3. For a pair of r.v. (X,Y) ~ px y(x,v), the mutual information (in bits) between X and Y is

denoted
px,y(x,y)

I(X;Y) 2 y(xy)lo M—]E{lo }
(X2 L Pl o)~ E 8 by (e ()
Lemma 1.4. Basic properties of joint entropy and mutual information:
1. (chain rule of entropy) H(X,Y) = H(X) + H(Y|X). If X and Y are independent, H(X,Y) = H(X) + H(Y).
Proof. Take the expectation of log, o ( = =log, pX( ) +log, m and note that py|x (y|x) = py (y)
for all x,y if X and Y are 1ndependent O

2. (mutual information) The mutual information satisfies

[(X;Y) = H(X) + H(Y) — H(X,Y) = H(X) — H(X|Y) = H(Y) — H(Y|X).

Proof. Take the expectation of log, % = log, o ( } + log, oy ( ) — log, m and apply the
chain rule as needed. Also, symmetry follows from swapping X,Y and x,y/in the sum because
pxy () = pyx(y,x). -

Examplel 5. LetX=Y={0,1} and px y(x,y) = zll{x7éy} + 4 )ll{x y}- Lt follows that px (x) = py(y) =
1, and hence H(X) = H(Y) = 1. Since pyix(ylx) € {p,1 p} it follows that H(Y|X) = H(p). Thus,
we have I(X;Y) = H(Y) — H(Y|X) =1 — H(p). The conditional distribution py|x called the binary
symmetric channel with error probability p and denoted by BSC(p).



Definition 1.6. The Kullback-Liebler (KL) divergence (in bits) between distributions p(x) and g(x), de-
fined on the same support X, is denoted
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where we assume OIngg =0 for g € [0,1] and plog, 5 = oo for p > 0. Thus, D(p||q) = oo if there is any
x € X such that p(x) > 0 and g(x) =

Remark 1.7. The divergence is non-negative and equal to 0 iff p(x) = g(x) for all x € X. Thus, it behaves
something like a metric on the space of distributions. It is not exactly a metric, however, because it is not
symmetric.

Example 1.8. For X = {0,1}, let p(1) = r define a Bernoulli(r) distribution and (1) = s define a
Bernoulli(s) distribution. Then, the divergence between p and g is given by
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Example 1.9. Let X be the number of ones in a length-n vector of i.i.d. Bernoulli(s) random variables.
Then, the probability the resulting vector has exactly rn ones is given by

P(X = rn) = ( " ) s (1 — 5)n(1=1),

rn

Using the results from the previous example, one can see that this equals
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Thus, we see that exponential decay rate is determined by the divergence between a Bernoulli(r) dis-

tribution and a Bernoulli(s) distribution. This example highlights the connection between information
theory and the theory of large deviations.

Definition 1.10. A function f : R — R is called convex on the interval (a,b) if, for all x1,x, € (a,b) and

A e€0,1],
fAxy + (1= A)x2) <Af(x1) + (1= A)f(x2).

It is called strictly convex if equality holds only if A = 0 or A = 1. For a (strictly) convex function f, the
function — f is called (strictly) concave.

Lemma 1.11 (Jensen’s Inequality). If f is convex and X is a real random variable, then
E[f(X)] = f(E[X]).
If f is strictly convex, the equality occurs iff X = E [X] with probability 1. The inequality is simply reversed if f is
(strictly) concave.
Proof. Since f is convex, any tangent line to its graph must lower bound the function. Thus, for any xp € R,

there is a constant a € R such that the linear function a(x — xg) + f(xg) lower bounds f(x). If we choose
xo = E[X], then it follows that

E[f(X)] > Ela(X = x0) + f(x0)] = aE [X] — aE [X] + f(E [X]) = f(E[X]).

If f is strictly convex, then equality in the tangent lower bound occurs only at x = xo. Thus, Jensen’s
inequality is strict unless X = IE [X] with probability 1. O



Theorem 1.12 (Non-Negativity of Divergence). For x € X, let p(x) and q(x) be two discrete distributions. Then,
D(pllq) = 0, with equality iff p(x) = q(x) holds for all x € X. This result holds even if _, q(x) <1

Proof. Let A =supp(p) £ {x € X : p(x) > 0} be the support of p(x). Then,
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The first inequality holds with equality iff p(x) = cq(x) for all x € A. The second inequality holds iff
Y veaq(x) = 1. From these, we see thatc =1 and g(x) = p(x) =0 forx € X\ A. O

Theorem 1.13 (Convexity of Divergence). The divergence D(p||q) is convex in the pair (p,q). Thus, for two
pairs, (p1,q1) and (p2,q2), we have

D(Ap1 + (1 = A)p2l|Ag1 + (1 = A)g2) < AD(p1llg1) + (1 = A)D(p2|I92)
forall A € [0,1].

Proof. For non—negative numbers ay,4ay,...,a4, and by, by, . .., by, we can form distributions p = (Z” L, Z””H )
171 1%

and g = (ﬁ, . Z ;) on the support [1]. From the non-negativity of Divergence, we get

1 lal
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where the equality holds iff §! is constant for i € [n]. This inequality is called the log-sum inequality

Za logzb (Z )logzzl 14i
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where equality holds iff ! is constant for i € [n].
One can apply this to the LHS of (1) to derive (1). O

Lemma 1.14. More properties of entropy and mutual information:

1. I(X;Y) > 0 with equality iff X and Y are independent.

Proof. First, we observe that I(X;Y) = D(px y|lpxpy). By Theorem this divergence is zero iff
pxy(x,y) = px(x)py(y) for all x,y, but this is precisely the definition of independence. O

2. H(Y|X) < H(Y) with equality iff X and Y are independent.

Proof. Since H(Y) — H(Y|X) = I(X;Y) = D(px vl pxpy) = 0iff X and Y are independent, this follow
directly from the previous statement. O

3. The entropy H(p) is concave in p and the uniform distribution is the unique maximum.
Proof. Given p(x) defined on X, let g(x) = 1/|X| for all x € X. Then, we see that

X
2 = —H(P) + log, X1

D(pllg) = ) p(x log21p/
xeX

Solving for H(p), we see that H(p) is concave in p because D(p||q) is convex in p. The uniform
distribution gives the unique maximum because D(p||g) > 0 with equality iff p(x) is uniform. O

Remark 1.15. From I(X;Y) = D(px y||pxpy), we see that the mutual information measures the difference
between a joint distribution px y and the product of its marginals pxpy.
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