Lecture-02: Mutual Information

1 Mutual Information

Definition 1.1. The **joint entropy** (in bits) of a pair of r.v. $(X, Y) \sim p_{X,Y}(x, y)$ is denoted

$$H(X,Y) \triangleq \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y)\log_2\frac{1}{p_{X,Y}(x,y)} = \mathbb{E}\left[\log_2\frac{1}{p_{X,Y}(X,Y)}\right]$$

Notice that this is identical to H(Z) with Z = (X, Y).

Definition 1.2. For a pair of r.v. $(X, Y) \sim p_{X,Y}(x, y)$, the **conditional entropy** (in bits) of Y given X is denoted

$$H(Y|X) \triangleq \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y) \frac{1}{\log_2 p_{Y|X}(y|x)} = \mathbb{E}\left[\frac{1}{\log_2 p_{Y|X}(Y|X)}\right]$$

Notice that this equals entropy of the conditional distribution $p_{Y|X}(y|x)$ averaged over x.

Definition 1.3. For a pair of r.v. $(X, Y) \sim p_{X,Y}(x, y)$, the **mutual information** (in bits) between X and Y is denoted

$$I(X;Y) \triangleq \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y)\log_2\frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)} = \mathbb{E}\left[\log_2\frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)}\right]$$

Lemma 1.4. Basic properties of joint entropy and mutual information:

1. (chain rule of entropy) H(X,Y) = H(X) + H(Y|X). If X and Y are independent, H(X,Y) = H(X) + H(Y).

Proof. Take the expectation of $\log_2 \frac{1}{p_{X,Y}(x,y)} = \log_2 \frac{1}{p_X(x)} + \log_2 \frac{1}{p_{Y|X}(y|x)}$ and note that $p_{Y|X}(y|x) = p_Y(y)$ for all x, y if X and Y are independent.

2. (mutual information) The mutual information satisfies

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

Proof. Take the expectation of $\log_2 \frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)} = \log_2 \frac{1}{p_X(x)} + \log_2 \frac{1}{p_Y(y)} - \log_2 \frac{1}{p_{X,Y}(x,y)}$ and apply the chain rule as needed. Also, symmetry follows from swapping *X*, *Y* and *x*, *y* in the sum because $p_{X,Y}(x,y) = p_{Y,X}(y,x)$.

Example 1.5. Let $\mathcal{X} = \mathcal{Y} = \{0,1\}$ and $p_{X,Y}(x,y) = \frac{\rho}{2} \mathbb{1}_{\{x \neq y\}} + \frac{(1-\rho)}{2} \mathbb{1}_{\{x=y\}}$. It follows that $p_X(x) = p_Y(y) = \frac{1}{2}$, and hence H(X) = H(Y) = 1. Since $p_{Y|X}(y|x) \in \{\rho, 1-\rho\}$, it follows that $H(Y|X) = \mathcal{H}(\rho)$. Thus, we have $I(X;Y) = H(Y) - H(Y|X) = 1 - \mathcal{H}(\rho)$. The conditional distribution $p_{Y|X}$ called the **binary symmetric channel** with error probability ρ and denoted by BSC(ρ).

Definition 1.6. The **Kullback-Liebler (KL) divergence** (in bits) between distributions p(x) and q(x), defined on the same support \mathcal{X} , is denoted

$$D(p||q) \triangleq \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{p(x)}{q(x)},$$

where we assume $0\log_2 \frac{0}{q} = 0$ for $q \in [0,1]$ and $p\log_2 \frac{p}{0} = \infty$ for p > 0. Thus, $D(p||q) = \infty$ if there is any $x \in \mathcal{X}$ such that p(x) > 0 and q(x) = 0.

Remark 1.7. The divergence is non-negative and equal to 0 iff p(x) = q(x) for all $x \in \mathcal{X}$. Thus, it behaves something like a metric on the space of distributions. It is not exactly a metric, however, because it is not symmetric.

Example 1.8. For $\mathcal{X} = \{0,1\}$, let p(1) = r define a Bernoulli(r) distribution and q(1) = s define a Bernoulli(s) distribution. Then, the divergence between p and q is given by

$$\mathcal{D}(r||s) \triangleq r \log_2 \frac{r}{s} + (1-r) \log_2 \frac{1-r}{1-s}$$

Example 1.9. Let X be the number of ones in a length-*n* vector of i.i.d. Bernoulli(*s*) random variables. Then, the probability the resulting vector has exactly *rn* ones is given by

$$\mathbb{P}(X = rn) = \binom{n}{rn} s^{rn} (1 - s)^{n(1 - r)}.$$

Using the results from the previous example, one can see that this equals

$$\frac{1+O(\frac{1}{nr(1-r)})}{\sqrt{2\pi nr(1-r)}} 2^{n\mathcal{H}(r)} 2^{n[r\log_2 s+(1-r)\log_2(1-s)]} = \frac{1+O(\frac{1}{nr(1-r)})}{\sqrt{2\pi nr(1-r)}} 2^{-n\mathcal{D}(r||s)}$$

Thus, we see that exponential decay rate is determined by the divergence between a Bernoulli(r) distribution and a Bernoulli(s) distribution. This example highlights the connection between information theory and the theory of large deviations.

Definition 1.10. A function $f : \mathbb{R} \to \mathbb{R}$ is called **convex** on the interval (a,b) if, for all $x_1, x_2 \in (a,b)$ and $\lambda \in [0,1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

It is called **strictly convex** if equality holds only if $\lambda = 0$ or $\lambda = 1$. For a (strictly) convex function f, the function -f is called (strictly) **concave**.

Lemma 1.11 (Jensen's Inequality). If f is convex and X is a real random variable, then

$$\mathbb{E}\left[f(X)\right] \ge f(\mathbb{E}\left[X\right]).$$

If f is strictly convex, the equality occurs iff $X = \mathbb{E}[X]$ with probability 1. The inequality is simply reversed if f is (strictly) concave.

Proof. Since *f* is convex, any tangent line to its graph must lower bound the function. Thus, for any $x_0 \in \mathbb{R}$, there is a constant $a \in \mathbb{R}$ such that the linear function $a(x - x_0) + f(x_0)$ lower bounds f(x). If we choose $x_0 = \mathbb{E}[X]$, then it follows that

$$\mathbb{E}\left[f(X)\right] \ge \mathbb{E}\left[a(X - x_0) + f(x_0)\right] = a\mathbb{E}\left[X\right] - a\mathbb{E}\left[X\right] + f(\mathbb{E}\left[X\right]) = f(\mathbb{E}\left[X\right]).$$

If *f* is strictly convex, then equality in the tangent lower bound occurs only at $x = x_0$. Thus, Jensen's inequality is strict unless $X = \mathbb{E}[X]$ with probability 1.

Theorem 1.12 (Non-Negativity of Divergence). For $x \in \mathcal{X}$, let p(x) and q(x) be two discrete distributions. Then, $D(p||q) \ge 0$, with equality iff p(x) = q(x) holds for all $x \in \mathcal{X}$. This result holds even if $\sum_{x} q(x) < 1$.

Proof. Let $A = \text{supp}(p) \triangleq \{x \in \mathcal{X} : p(x) > 0\}$ be the support of p(x). Then,

$$-D(p||q) = \sum_{x \in A} p(x) \log_2 \frac{q(x)}{p(x)} \leq \log_2 \sum_{x \in A} p(x) \frac{q(x)}{p(x)} \leq \log_2 \sum_{x \in \mathcal{X}} q(x) = 0.$$

The first inequality holds with equality iff p(x) = cq(x) for all $x \in A$. The second inequality holds iff $\sum_{x \in A} q(x) = 1$. From these, we see that c = 1 and q(x) = p(x) = 0 for $x \in \mathcal{X} \setminus A$.

Theorem 1.13 (Convexity of Divergence). The divergence D(p||q) is convex in the pair (p,q). Thus, for two pairs, (p_1,q_1) and (p_2,q_2) , we have

$$D(\lambda p_1 + (1 - \lambda)p_2 \|\lambda q_1 + (1 - \lambda)q_2) \leq \lambda D(p_1 \| q_1) + (1 - \lambda)D(p_2 \| q_2)$$

for all $\lambda \in [0,1]$.

Proof. For non-negative numbers $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$, we can form distributions $p = (\frac{a_1}{\sum_i a_i}, ..., \frac{a_n}{\sum_i b_i})$ and $q = (\frac{b_1}{\sum_i b_i}, ..., \frac{b_n}{\sum_i b_i})$ on the support [n]. From the non-negativity of Divergence, we get

$$0 \leq D(p||q) = \sum_{i=1}^{n} \frac{a_i}{\sum_i a_i} \log_2 \frac{a_i}{b_i} - \log_2 \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i},$$

where the equality holds iff $\frac{a_i}{b_i}$ is constant for $i \in [n]$. This inequality is called the log-sum inequality

$$\sum_{i=1}^{n} a_i \log_2 \frac{a_i}{b_i} \ge (\sum_{i=1}^{n} a_i) \log_2 \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i},$$

where equality holds iff $\frac{a_i}{b_i}$ is constant for $i \in [n]$.

One can apply this to the LHS of (1) to derive (1).

Lemma 1.14. *More properties of entropy and mutual information:*

1. $I(X;Y) \ge 0$ with equality iff X and Y are independent.

Proof. First, we observe that $I(X;Y) = D(p_{X,Y} || p_X p_Y)$. By Theorem 1.12, this divergence is zero iff $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for all x, y, but this is precisely the definition of independence.

2. $H(Y|X) \leq H(Y)$ with equality iff X and Y are independent.

Proof. Since $H(Y) - H(Y|X) = I(X;Y) = D(p_{X,Y}||p_Xp_Y) \ge 0$ iff X and Y are independent, this follow directly from the previous statement.

3. The entropy H(p) is concave in p and the uniform distribution is the unique maximum.

Proof. Given p(x) defined on \mathfrak{X} , let $q(x) = 1/|\mathfrak{X}|$ for all $x \in \mathfrak{X}$. Then, we see that

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{p(x)}{1/|\mathcal{X}|} = -H(p) + \log_2 |\mathcal{X}|.$$

Solving for H(p), we see that H(p) is concave in p because D(p||q) is convex in p. The uniform distribution gives the unique maximum because $D(p||q) \ge 0$ with equality iff p(x) is uniform. \Box

Remark 1.15. From $I(X;Y) = D(p_{X,Y}||p_Xp_Y)$, we see that the mutual information measures the difference between a joint distribution $p_{X,Y}$ and the product of its marginals p_Xp_Y .