
Lecture-02: Mutual Information

1 Mutual Information

Definition 1.1. The joint entropy (in bits) of a pair of r.v. (X,Y) ∼ pX,Y(x,y) is denoted

H(X,Y), ∑
(x,y)∈X×Y

pX,Y(x,y) log2
1

pX,Y(x,y)
= E

[
log2

1
pX,Y(X,Y)

]
.

Notice that this is identical to H(Z) with Z = (X,Y).

Definition 1.2. For a pair of r.v. (X,Y)∼ pX,Y(x,y), the conditional entropy (in bits) of Y given X is denoted

H(Y|X), ∑
(x,y)∈X×Y

pX,Y(x,y)
1

log2 pY|X(y|x)
= E

[
1

log2 pY|X(Y|X)

]
.

Notice that this equals entropy of the conditional distribution pY|X(y|x) averaged over x.

Definition 1.3. For a pair of r.v. (X,Y) ∼ pX,Y(x,y), the mutual information (in bits) between X and Y is
denoted

I(X;Y), ∑
(x,y)∈X×Y

pX,Y(x,y) log2
pX,Y(x,y)

pX(x)pY(y)
= E

[
log2

pX,Y(x,y)
pX(x)pY(y)

]
.

Lemma 1.4. Basic properties of joint entropy and mutual information:

1. (chain rule of entropy) H(X,Y) = H(X) + H(Y|X). If X and Y are independent, H(X,Y) = H(X) + H(Y).

Proof. Take the expectation of log2
1

pX,Y(x,y) = log2
1

pX(x) + log2
1

pY|X(y|x)
and note that pY|X(y|x) = pY(y)

for all x,y if X and Y are independent.

2. (mutual information) The mutual information satisfies

I(X;Y) = H(X) + H(Y)− H(X,Y) = H(X)− H(X|Y) = H(Y)− H(Y|X).

Proof. Take the expectation of log2
pX,Y(x,y)

pX(x)pY(y)
= log2

1
pX(x) + log2

1
pY(y)

− log2
1

pX,Y(x,y) and apply the
chain rule as needed. Also, symmetry follows from swapping X,Y and x,y in the sum because
pX,Y(x,y) = pY,X(y, x).

Example 1.5. Let X= Y= {0,1} and pX,Y(x,y) = ρ
2 1{x 6=y}+

(1−ρ)
2 1{x=y}. It follows that pX(x) = pY(y) =

1
2 , and hence H(X) = H(Y) = 1. Since pY|X(y|x) ∈ {ρ,1− ρ}, it follows that H(Y|X) = H(ρ). Thus,
we have I(X;Y) = H(Y) − H(Y|X) = 1− H(ρ). The conditional distribution pY|X called the binary
symmetric channel with error probability ρ and denoted by BSC(ρ).
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Definition 1.6. The Kullback-Liebler (KL) divergence (in bits) between distributions p(x) and q(x), de-
fined on the same support X, is denoted

D(p‖q), ∑
x∈X

p(x) log2
p(x)
q(x)

,

where we assume 0log2
0
q = 0 for q ∈ [0,1] and p log2

p
0 = ∞ for p > 0. Thus, D(p‖q) = ∞ if there is any

x ∈ X such that p(x) > 0 and q(x) = 0.

Remark 1.7. The divergence is non-negative and equal to 0 iff p(x) = q(x) for all x ∈ X. Thus, it behaves
something like a metric on the space of distributions. It is not exactly a metric, however, because it is not
symmetric.

Example 1.8. For X = {0,1}, let p(1) = r define a Bernoulli(r) distribution and q(1) = s define a
Bernoulli(s) distribution. Then, the divergence between p and q is given by

D(r‖s), r log2
r
s
+ (1− r) log2

1− r
1− s

.

Example 1.9. Let X be the number of ones in a length-n vector of i.i.d. Bernoulli(s) random variables.
Then, the probability the resulting vector has exactly rn ones is given by

P(X = rn) =
(

n
rn

)
srn(1− s)n(1−r).

Using the results from the previous example, one can see that this equals

1 + O( 1
nr(1−r) )√

2πnr(1− r)
2nH(r)2n[r log2 s+(1−r) log2(1−s)] =

1 + O( 1
nr(1−r) )√

2πnr(1− r)
2−nD(r‖s).

Thus, we see that exponential decay rate is determined by the divergence between a Bernoulli(r) dis-
tribution and a Bernoulli(s) distribution. This example highlights the connection between information
theory and the theory of large deviations.

Definition 1.10. A function f : R→ R is called convex on the interval (a,b) if, for all x1, x2 ∈ (a,b) and
λ ∈ [0,1],

f (λx1 + (1− λ)x2)6 λ f (x1) + (1− λ) f (x2).

It is called strictly convex if equality holds only if λ = 0 or λ = 1. For a (strictly) convex function f , the
function − f is called (strictly) concave.

Lemma 1.11 (Jensen’s Inequality). If f is convex and X is a real random variable, then

E [ f (X)]> f (E [X]).

If f is strictly convex, the equality occurs iff X = E [X] with probability 1. The inequality is simply reversed if f is
(strictly) concave.

Proof. Since f is convex, any tangent line to its graph must lower bound the function. Thus, for any x0 ∈R,
there is a constant a ∈ R such that the linear function a(x − x0) + f (x0) lower bounds f (x). If we choose
x0 = E [X], then it follows that

E [ f (X)]> E [a(X− x0) + f (x0)] = aE [X]− aE [X] + f (E [X]) = f (E [X]).

If f is strictly convex, then equality in the tangent lower bound occurs only at x = x0. Thus, Jensen’s
inequality is strict unless X = E [X] with probability 1.
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Theorem 1.12 (Non-Negativity of Divergence). For x ∈X, let p(x) and q(x) be two discrete distributions. Then,
D(p‖q)> 0, with equality iff p(x) = q(x) holds for all x ∈ X. This result holds even if ∑x q(x) < 1.

Proof. Let A = supp(p), {x ∈ X : p(x) > 0} be the support of p(x). Then,

−D(p‖q) = ∑
x∈A

p(x) log2
q(x)
p(x)

6 log2 ∑
x∈A

p(x)
q(x)
p(x)

6 log2 ∑
x∈X

q(x) = 0.

The first inequality holds with equality iff p(x) = cq(x) for all x ∈ A. The second inequality holds iff
∑x∈A q(x) = 1. From these, we see that c = 1 and q(x) = p(x) = 0 for x ∈ X \ A.

Theorem 1.13 (Convexity of Divergence). The divergence D(p‖q) is convex in the pair (p,q). Thus, for two
pairs, (p1,q1) and (p2,q2), we have

D(λp1 + (1− λ)p2‖λq1 + (1− λ)q2)6 λD(p1‖q1) + (1− λ)D(p2‖q2)

for all λ ∈ [0,1].

Proof. For non-negative numbers a1, a2, . . . , an and b1,b2, . . . ,bn, we can form distributions p = ( a1
∑i ai

, . . . , an
∑i ai

)

and q = ( b1
∑i bi

, . . . , bn
∑i bi

) on the support [n]. From the non-negativity of Divergence, we get

0 6 D(p‖q) =
n

∑
i=1

ai

∑i ai
log2

ai
bi
− log2

∑n
i=1 ai

∑n
i=1 bi

,

where the equality holds iff ai
bi

is constant for i ∈ [n]. This inequality is called the log-sum inequality

n

∑
i=1

ai log2
ai
bi

> (
n

∑
i=1

ai) log2
∑n

i=1 ai

∑n
i=1 bi

,

where equality holds iff ai
bi

is constant for i ∈ [n].
One can apply this to the LHS of (1) to derive (1).

Lemma 1.14. More properties of entropy and mutual information:

1. I(X;Y)> 0 with equality iff X and Y are independent.

Proof. First, we observe that I(X;Y) = D(pX,Y‖pX pY). By Theorem 1.12, this divergence is zero iff
pX,Y(x,y) = pX(x)pY(y) for all x,y, but this is precisely the definition of independence.

2. H(Y|X)6 H(Y) with equality iff X and Y are independent.

Proof. Since H(Y)− H(Y|X) = I(X;Y) = D(pX,Y‖pX pY)> 0 iff X and Y are independent, this follow
directly from the previous statement.

3. The entropy H(p) is concave in p and the uniform distribution is the unique maximum.

Proof. Given p(x) defined on X, let q(x) = 1/|X| for all x ∈ X. Then, we see that

D(p‖q) = ∑
x∈X

p(x) log2
p(x)

1/ |X| = −H(p) + log2 |X|.

Solving for H(p), we see that H(p) is concave in p because D(p‖q) is convex in p. The uniform
distribution gives the unique maximum because D(p‖q)> 0 with equality iff p(x) is uniform.

Remark 1.15. From I(X;Y) = D(pX,Y‖pX pY), we see that the mutual information measures the difference
between a joint distribution pX,Y and the product of its marginals pX pY.
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