
Lecture-03: Data Processing

1 Data Processing

The definitions of entropy, mutual information, and divergence all extend naturally to any finite number of
random variables by treating multiple random variables as a single random vector. However, there are a
few new concepts that can only be defined in terms of three random variables. Let X,Y, and Z be random
variables with joint distribution pX,Y,Z(x,y,z).

Definition 1.1. For three r.v. (X,Y, Z) ∼ pX,Y,Z(x,y,z) defined on X× Y× Z, the conditional mutual infor-
mation (in bits) between X and Y given Z is denoted

I(X;Y|Z), ∑
(x,y,z)∈X×Y×Z

pX,Y,Z(x,y,z) log2
pX,Y|Z(x,y,z)

pX|Z(x,z)pY|Z(y,z)
= E

[
log2

pX,Y|Z(X,Y, Z)
pX|Z(X, Z)pY|Z(Y, Z)

]
.

From this, we see that I(X;Y|Z) = H(X|Z) + H(Y|Z)− H(X,Y|Z). Thus the conditioning is simply inher-
ited by each entropy in the standard decomposition.

Definition 1.2. Three r.v. (X,Y, Z) ∼ pX,Y,Z(x,y,z) form a Markov chain X−Y− Z if

pX,Y,Z(x,y,z) = pX(x)pY|X(y|x)pZ|Y(z|y).

This is clearly the same as pZ|X,Y(z|x,y) = pZ|Y(z|y) for all x,y,z, which is equivalent to the condition that
X and Z are conditionally independent given Y.

Lemma 1.3. Properties of mutual information for three random variables:

1. (chain rule of mutual information) I(X;Y, Z) = I(X;Y) + I(X; Z|Y).

Proof. This follows from the expectation of the decomposition

log2
pX,Y,Z(X,Y, Z)

pX(x)pY,Z(Y, Z)
= log2

pX,Y(X,Y)pZ|X,Y(Z|X,Y)
pX(x)pY(Y)pZ|Y(Z|Y) = log2

pX,Y(X,Y)
pX(x)pY(Y)

+ log2
pX,Z|Y(X, Z|Y)

pZ|Y(Z|Y)pX|Y(X|Y) .

2. (non-negativity of conditional mutual information) I(X;Y|Z) > 0 with equality iff X and Y are conditionally
independent given Z.

Proof. First, we observe that

I(X;Y|Z) = ∑
z

pZ(z)D(pX,Y|Z=z‖pX|Z=z pY|Z=z).

Each term in this sum is non-negative and equal to zero iff pX,Y|Z=z(x,y) = pX|Z=z(x)pY|Z=z(y) for all
x,y. Thus, the overall sum is zero iff the condition holds for all x,y,z (i.e., X and Y are conditionally
independent given Z).

Theorem 1.4 (Data Processing Inequality). If three r.v. (X,Y, Z) ∼ pX,Y,Z(x,y,z) form a Markov chain X −
Y− Z, then I(X; Z)6 I(X;Y). For example, if Z = f (Y) is a function of Y, then X−Y− Z form a Markov chain.
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Proof. Applying the chain rule of mutual information in the two possible orders gives

I(X;Y, Z) = I(X; Z) + I(X;Y|Z) = I(X;Y) + I(X; Z|Y).

Since X−Y− Z form a Markov chain, X and Z are conditionally independent and I(X; Z|Y) = 0. Thus, we
have

I(X;Y) = I(X; Z) + I(X;Y|Z)> I(X; Z).

If Z = f (Y), then pZ|X,Y(z|x,y) = 1{z= f (y)} = pZ|Y(z,y) and X−Y− Z form a Markov chain.

Example 1.5. A system has a random state X and an experiment with outcome Y is performed to
measure that state. Is it possible that additional processing can produce a new output Z = f (Y) such
that H(X|Z) < H(X|Y)?

Theorem 1.6 (Fano’s Inequality). Let the r.v. Y be an observation of the r.v. X and X̂ = f (Y) be an estimate of X.
Then, the error probability Pe = P(X̂ 6= X) satisfies

H(Pe) + Pe log2(|X| − 1)> H(X|Y).

Proof. Let E = 1{X̂=X} be an indicator r.v. for the error event. Expanding the conditional entropy H(E, X|X̂)

in two ways gives
H(E, X|X̂) = H(X|X̂) + H(E|X, X̂) = H(E|X̂) + H(X|E, X̂).

Now H(X|X̂)> H(X|Y) by data processing inequality, since X−Y− X̂ form a Markov chain, and H(E|X, X̂) =
0 since E = 1{X 6=X̂}. Further, H(E|X̂)6 H(E) =H(Pe) since the conditioning reduces entropy. In addition,

H(X|E = 0, X̂) = 0, and we can write

H(X|E = 1, X̂)6 H(X 6= X̂)6 log2(|X| − 1).

This implies that H(X|E, X̂)6 Pe log2(|X| − 1). Rearranging these terms gives the stated result.

2 Sequences of random variables

Let (Xt : t∈N) be a random process where each random variable lies in X. The joint probability distribution
of the first N random variables is denoted PN(x1, . . . , xN). Let [N], {1,2, . . . , N} , A ⊆ [N], and Ā = [N] \ A
be sets of indices. We will denote subvectors with indices in A and Ā by

xA = (xt : t ∈ A), xĀ = (xt : t ∈ Ā).

The marginal distribution of variables in A is given by summing over all variables in Ā:

PA(xA) = ∑
xĀ

PN(x1, . . . , xN).

Definition 2.1. The entropy rate of a random process is defined to be

hX , lim
N→∞

1
N

H(X1, X2, . . . , XN),

if the limit exists.

Example 2.2. If the random variables are drawn i.i.d. according to p(x), then

PN(x1, . . . , xN) =
N

∏
t=1

p(xt).

In this case, H(X1, . . . , XN) = NH(p) and the entropy rate is hX = H(p).
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Example 2.3. If the random variables form a homogenous Markov chain, then

PN(x1, . . . , xN) = p1(x1)
N

∏
t=1

w(xt→ xt+1),

where p1(x) is the distribution of the initial state and w(x→ x′) = pXt+1|Xt
(x′|x) defines the transition

probabilities of the chain. In this case, the entropy rate is given by

hX = lim
N→∞

1
N

H(X1, X2, . . . , XN) = lim
N→∞

1
N

(
H(X1) +

N−1

∑
t=1

H(Xt+1|Xt)

)

= lim
N→∞

1
N

N−1

∑
t=1

∑
x∈X

pt(x) ∑
x′∈X

w(x→ x′) log2
1

w(x→ x′)

= ∑
x∈X

(
lim

N→∞

1
N

N−1

∑
t=1

pt(x)

)
∑

x′∈X
w(x→ x′) log2

1
w(x→ x′)

= ∑
x∈X

p∗(x) ∑
x′∈X

w(x→ x′) log2
1

w(x→ x′)
,

where the last step assumes that w(x → x′) was chosen so that the limiting occupancy distribution
p∗(x) = limN→∞

1
N ∑N−1

t=1 pt(x) exists and is independent of the initial state distribution.
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