Lecture-03: Data Processing

1 Data Processing

The definitions of entropy, mutual information, and divergence all extend naturally to any finite number of
random variables by treating multiple random variables as a single random vector. However, there are a
few new concepts that can only be defined in terms of three random variables. Let X,Y, and Z be random
variables with joint distribution px y 7 (x,y,z).

Definition 1.1. For three r.v. (X,Y,Z) ~ pxy z(x,y,z) defined on X x Y x Z, the conditional mutual infor-
mation (in bits) between X and Y given Z is denoted
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From this, we see that I(X;Y|Z) = H(X|Z) + H(Y|Z) — H(X,Y|Z). Thus the conditioning is simply inher-
ited by each entropy in the standard decomposition.

Definition 1.2. Threer.v. (X,Y,Z) ~ pxy z(x,y,z) form a Markov chain X — Y — Z if
px,y,z(x,y,2) = px(x)py|x (Y[x)pz)y (z]y)-

This is clearly the same as pyx vy (z|x,y) = pz)y(z|y) for all x,y,z, which is equivalent to the condition that
X and Z are conditionally independent given Y.

Lemma 1.3. Properties of mutual information for three random variables:
1. (chain rule of mutual information) 1(X;Y,Z) = I(X;Y) + I(X; Z|Y).
Proof. This follows from the expectation of the decomposition
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2. (non-negativity of conditional mutual information) I(X;Y|Z) > 0 with equality iff X and Y are conditionally
independent given Z.

Proof. First, we observe that

[(X;Y1Z) =) pz(2)D(px,v|z—:1Px|2=2P¥|z—2)-
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Each term in this sum is non-negative and equal to zero iff px y|7—.(x,y) = px|z—(x)py|z—-(y) for all
x,y. Thus, the overall sum is zero iff the condition holds for all x,y,z (i.e., X and Y are conditionally
independent given Z). O

Theorem 1.4 (Data Processing Inequality). If three r.v. (X,Y,Z) ~ pxy, z(x,y,z) form a Markov chain X —
Y — Z, then [(X;Z) < I(X;Y). For example, if Z = f(Y) is a function of Y, then X — Y — Z form a Markov chain.



Proof. Applying the chain rule of mutual information in the two possible orders gives
I(XY,Z) = 1(X;Z) + [(X;Y|Z) = [(X;Y) + [(X; Z|Y).

Since X — Y — Z form a Markov chain, X and Z are conditionally independent and I(X;Z|Y) = 0. Thus, we
have
I(XY)=I1(X;2)+ I(X;Y|Z) > I(X;Z2).

If Z=f(Y), then pzx y(z|x,y) = L.y} = Pz)v(2,y) and X — Y — Z form a Markov chain. O

Example 1.5. A system has a random state X and an experiment with outcome Y is performed to
measure that state. Is it possible that additional processing can produce a new output Z = f(Y) such
that H(X|Z) < H(X|Y)?

Theorem 1.6 (Fano’s Inequality). Let the r.v. Y be an observation of the r.v. X and X = f(Y) be an estimate of X.
Then, the error probability P, = P(X # X) satisfies

H(P.) + Pelog, (|X| —1) > H(X]Y).

Proof. LetE=1 (%=X} be an indicator r.v. for the error event. Expanding the conditional entropy H(E, X|X)
in two ways gives X X
H(E,X|X) = H(X|X) + H(E|X, %) = H(E|X) + H(X|E, X).
Now H(X|X) > H(X|Y) by data processing inequality, since X — Y — X form a Markov chain, and H(E|X,X) =
Osince E=1 (x£%}" Further, H(E|X) < H(E) = H(P,) since the conditioning reduces entropy. In addition,

H(X|E =0,X) =0, and we can write
H(X|E=1,X) <H(X #X) <log,(]X| - 1).
This implies that H(X|E, X) < P.log,(]X| — 1). Rearranging these terms gives the stated result. O

2 Sequences of random variables

Let (X; : t € N) be arandom process where each random variable lies in X. The joint probability distribution
of the first N random variables is denoted Py/(x1,...,xy). Let [N] £ {1,2,...,N},AC [N],and A = [N]\ A
be sets of indices. We will denote subvectors with indices in A and A by

xa=(xt:t€A), xz=(xt:t€A).
The marginal distribution of variables in A is given by summing over all variables in A:

PA(XA) = ZPN(Jq,. . .,XN).
XA
Definition 2.1. The entropy rate of a random process is defined to be

1
hX £ lim NH(X],XQ,...,XN),

N—o0

if the limit exists.

Example 2.2. If the random variables are drawn i.i.d. according to p(x), then
N
PN(Xl,. . .,XN) = Hp(xt)

t=1

In this case, H(X3,...,Xy) = NH(p) and the entropy rate is hx = H(p).



Example 2.3. If the random variables form a homogenous Markov chain, then

N

Pn(x1,...,xN) = pl(xl)l_[w(xt — Xp1),
=1

where p; (x) is the distribution of the initial state and w(x — x") = px,, |, (¥[x) defines the transition
probabilities of the chain. In this case, the entropy rate is given by
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where the last step assumes that w(x — x’) was chosen so that the limiting occupancy distribution
p*(x) = limy_yeo i Zgi 1! pi(x) exists and is independent of the initial state distribution.
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