
Lecture-04: Data Compression and Transmission

1 Data Compression

Consider a source that generates a sequence of symbols taking values in a finite alphabet X. Such a source
is typically modeled by a random process (Xt : t ∈N). For the purpose of communication and storage, it is
desirable to encode this sequence using as few bits as possible. If exact reconstruction is required, then this
is known as lossless source coding.

The most natural approach to this problem is to encode length-N source blocks (X1, . . . , XN) into variable-
length blocks of bits. Let {0,1}∗ = ∪∞

n=0 {0,1}n denote the set of finite-length binary strings. Then, the
source encoder is a function

w : XN → {0,1}∗

x 7→ w(x).

If the source sequence consists of the length-N blocks x(1), x(2), . . . , x(r), then the encoded sequence is the
concatenation w(x(1)),w(x(2)), . . . ,w(x(r)). Since the output sequence does not add markers between blocks,
one must choose the w carefully to guarantee decodability. The standard approach is use to prefix-free (or
instantaneous) codes where no codeword is a prefix of another codeword. This allows the decoder to
uniquely reconstruct the codeword boundaries.

An important property of a code is its average length. If lw(x) is the length of w(x) in bits, then the
average length of an encoded block

L(w) = ∑
x∈XN

PN(x)lw(x) bits.

Any prefix-free code can be represented by a binary tree whose leaf nodes are labeled by codewords. To
construct a prefix-free code, one can draw a binary tree and sequentially assign x values to nodes. After
each assignment, all children of the assigned node are removed.

Exercise 1.1. Is there a prefix-free code with codeword lengths 1, 2, 3, 3? How about 2, 2, 3, 3, 3, 4, 4, 4? Try
constructing a code for each case.

Lemma 1.2 (Kraft Inequality). A prefix-free source code with length function lw(x) exists iff ∑x∈XN 2−lw(x) 6 1.

Proof. We will show that if w : XN → {0,1}∗ is a prefix-free encoding map, then it satisfies the Kraft in-
equality. Let lmax = maxx∈XN lw(x) and recall that a binary tree has exactly 2l nodes at depth l. Since w is a
prefix-free code, w(x) is one of the nodes in the binary tree at depth lw(x), and none of its children belong
to the code. This node has 2lmax − 2lw(x) leaf nodes at the depth lmax.

Conversely, we can show that if there is a sequence of lengths lw(x) for messages x ∈ XN , satisfying the
Kraft inequality, then there exists a prefix-free encoding map w : XN → {0,1}∗ such that lw(x) is the length
of the code w(x). To construct a code, one starts with the complete binary tree of depth lmax. Then, for each
x ∈ supp(PN) (in order of increasing length), one assigns x to a codeword w(x) of length lw(x). For an x
with length lw(x), one finds an available node at depth lw(x), assigns the binary label of that node to w(x),
and then removes all children of that node.

Assigning a codeword of length lw(x) removes exactly 2l−lw(x) nodes at depth l for l > lw(x). Thus, this
process succeeds up to depth l if and only if

∑
x:lw(x)6l

2l−lw(x) 6 2l .
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Theorem 1.3 (Source Coding Theorem). For the distribution PN(x), let L∗N be average length of an encoded block
for the prefix-free code with the minimum average length. Then,

H(X)6 L∗N 6 H(X) + 1.

Proof. Let lw(x) be the length function for a valid prefix-free code and define QN(x) = 2−lw(x). Since lw(x)
must satisfy the Kraft inequality, it follows that ∑x QN(x) 6 1. Using non-negativity of KL-divergence
(which holds even if ∑x q(x)6 1), we see that the average code length, L, satisfies

L− H(PN) = ∑
x∈X

PN(x)
(

lw(x)− log2
1

PN(x)

)
= ∑

x∈X
PN(x) log2

PN(x)
QN(x)

= D(PN‖QN)> 0.

If we choose lw(x) to be the length function for a code that achieves the optimal L = L∗N , then this implies
that L∗N > H(PN). To achieve the upper bound, we design a code with lw(x) = dlog2 PN(x)e and compute

L∗N 6 ∑
x∈X

PN(x)d− log2 PN(x)e6 ∑
x∈X

PN(x)
(

1 + log2
1

PN(x)

)
= H(X) + 1.

Together, these complete the proof.

Remark 1.4. This shows that one operational definition of the entropy is “the minimum average length of
any variable length code that can be used to reconstruct X”.
Remark 1.5. In theory, one can use source coding theorem to achieve optimal compression rate for i.i.d.
sequences. To see this, we observe that H(PN) = NH(X1). Thus, by increasing N, the constructive upper
bound in the theorem gives a compression rate (i.e., bits per source symbol) of

L∗N
N

6 H(X1) +
1
N

.

Example 1.6. Let us consider what happens if a code is designed for a different distribution, QN , and
then used with the distribution PN . From source coding theorem, we see that the average code length,
L, must satisfy L > H(PN) + D(PN‖QN). On the other hand, if the lengths are chosen to be lw(x) =
d− log2 QN(x)e, then the average length satisfies

L = ∑
x∈X

PN(x)d− log2 QN(x)e6 ∑
x∈X

PN(x)
(

log2
1

QN(x)
+ 1

)
= H(X) + 1 + D(PN‖QN).

Remark 1.7. This shows that one operational definition of the divergence D(PN‖QN) is “the increase in
average length associated with designing a code for QN when the true distribution is PN”.

2 Data Transmission

In engineering, one often wants to communicate information across an unreliable medium. For example,
think of a system that modulates the current in a wire (by adjusting the voltage at one end) and measures
the current at the other end. Due to thermal fluctuations, the difference between the modulated current
at the measured current will always contain some randomness. One can analyze this situation by first
discretizing time and then defining a simple mathematical model.

Definition 2.1. A discrete memoryless channel (DMC) is defined by a finite input alphabet X, a finite
output alphabet Y, and a conditional probability distribution Q(y|x). For N ∈ N channel uses, let the
channel input vector be a random vector X = (X1, . . . , XN) ∈ XN . Then, the channel output vector is a
random vector Y = (Y1, . . . ,YN) ∈ YN where

QN(y|x), P(Y = y|X = x) =
N

∏
t=1

Q(yi|xi).
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Example 2.2. For example, the binary symmetric channel (BSC) with error probability ρ has X = Y =
{0,1} and is defined by

Q(y|x) = (1− ρ)1{x=y} + ρ1{x 6=y}.

Example 2.3. For example, the binary erasure channel (BEC) with erasure probability ε has X =
{0,1} ,Y= {0,1,∗}, and is defined by

Q(y|x) = ε1{y=∗} + (1− ε)1{y=x}.

Channel coding is the process of improving performance by adding redundancy (e.g., by encoding
an K bit message into N > K bits).

Definition 2.4. For binary-input channel, a length-N code carrying an K-bit message is defined by an en-
coder that maps m ∈ {0,1}K to a codeword x(m) ∈ {0,1}N . The ratio R = K/N is called the rate (in informa-
tion bits per channel use) of the code. A message decoder xd : YN → {0,1}K is a mapping from the channel
output to one of the possible input messages.

Example 2.5. For a BSC, the simplest approach is to simply repeat each bit N times and decode via
majority vote (i.e., x(0) = 00 . . . 00, x(1) = 11 . . . 11, and xd(y) = 1{∑N

i=1 yi>N/2}. In this case, the original

bit will be recovered correctly as long as there are no more than bN/2c errors. Thus, one can achieve
arbitrary reliability by increasing N. But, increasing N also reduces the rate of communication.

Definition 2.6. For a code/decoder pair, the block error probability of message m is the probability,

PB(m) = ∑
y∈YN

QN(y|x(m))1{xd(y) 6=m},

that decoder does not return m when message m is transmitted. The maximum and average block error
probabilities are denoted by Pmax

B , maxm∈{0,1}K PB(m) and Pav
B , 1

2M ∑m∈{0,1}K PB(m) respectively.

Definition 2.7. A code rate R is achievable if there exists a sequence of encoder/decoder pairs with rate
RN → R and block error rate PB,N → 0. The channel capacity is the supremum of all achievable code rates.

Remark 2.8. One can get a qualitative feel for achievable rates via the following argument. The key is that,
for i.i.d. sequences (X1, . . . , XN) with large N, the probability distribution essentially becomes uniform over
a set of 2NH(X) “typical” sequences. Thus, for (X,Y)∼ p(x)Q(y|x), the i.i.d. sequence ((X1,Y1), ..., (XN ,YN))

takes one of 2NH(X,Y) different typical values with essentially uniform probability. If we ignore the X
values, then the number of (Y1, . . . ,YN) typical sequences is roughly 2NH(Y). If we fix the (X1, . . . , XN)
sequence to a typical value (x1, . . . , xN), then the number of ((x1,Y1), . . . , (xN ,YN)) typical sequences is
roughly 2NH(Y|X=x) = 2NH(Y|X). This last set of sequences can be seen as the likely set of output sequences
if x is transmitted. Thus, if the likely output sets of each codeword fill the space but do not overlap, then
we get 2NR2NH(Y|X) = 2NH(Y) or R = H(Y)− H(Y|X) = I(X;Y).

Theorem 2.9 (Channel Coding Theorem). For a DMC, the channel capacity is given by

C , max
p(x)

I(X;Y) = max
p(x)

∑
(x,y)∈X×Y

p(x)Q(y|x) log2
Q(y|x)

∑x′ p(x′)Q(y|x′) .

Thus, for any R 6 C, there exists a sequence of encoder/decoder pairs such that RN → R and PB,N → 0. Conversely,
if a sequence of encoder/decoder pairs satisfies RN → R and PB,N → 0, then R 6 C.
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Proof. Achievability will be shown in a later lecture. The following converse demonstrates the power and
simplicity of information theory. For any length-N encoder/decoder pair, let M be a uniform random
message, X = x(M) be its encoded codeword, Y be the channel output, and M̂ = xd(Y) be the decoded
message. Since M−X−Y− M̂ form a Markov chain, we have from the successive applications of H(M) =
K = NR, definition of I(M; M̂), Fano’s inequality, H(PB) 6 1, data processing inequality, and lemma on
successive channel use,

NR = H(M) = H(M|M̂) + I(M; M̂)6H(PB) + PB log2(2
NR − 1) + I(M; M̂)6 1 + PBNR + I(M; M̂)

6 1 + PBNR + I(X;Y)6 1 + PBNR + NC.

Solving for an upper bound on R, we find that R 6 1
1−PB

(
C + 1

N

)
. Thus, RN → R 6 C for any sequence

where N→∞ and PB,N → 0.

Exercise 2.10. Verify that the capacity of the BEC(ε) channel is C = 1− ε and the capacity of the BSC(ρ)
channel is C = 1−H(ρ). Hint: Use I(X;Y) = H(Y)− H(Y|X).

Lemma 2.11. For N channel uses on a DMC, I(X;Y)6 NC.

Proof. This follows from successive applications of chain rule of entropy, memorylessness of channel, re-
duction of entropy due to conditioning, and mutual information upper-bounded by capacity,

I(X;Y) = H(Y)− H(Y|X) =
N

∑
i=1

H(Yi|Y1, . . . ,Yi−1)−
N

∑
i=1

H(Yi|Y1, . . . ,Yi−1, X)

=
N

∑
i=1

H(Yi|Y1, . . . ,Yi−1)−
N

∑
i=1

H(Yi|Xi)6
N

∑
i=1

H(Yi)−
N

∑
i=1

H(Yi|Xi)6
N

∑
i=1

I(Xi;Yi)6 NC.
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