Lecture-06: The fluctuation-dissipation theorem

1 Temperature limits of thermodynamic potentials

We wish to study the behaviour of the thermodynamic potentials in the limiting cases of high temperature
(B — 0) and low temperature ( — c0).

1.1 High temperature limit

In the high temperature limit, we take g — 0, and the Boltzmann distribution is approximately the uniform
distribution over the set of all states in the state space X. Taking the Taylor series expansion around 8 =0,
we get that

S(B) = H(up) =log|X| +©O(p),
where |X| denotes the cardinality of the state space X. The internal energy U(p) is given by

U(p) = (E)o +O(B),

where (E), = |17\ Y rex E(x) is the internal energy at § = 0. From the above equations, it can be seen that
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1.2 Low temperature limit

In the low temperature limit, we take f — oo and the Boltzmann distribution is approximately the uniform
distribution over the set of ground states with the lowest energy. Let Ej be the ground state energy and Xy
be the ground state. For a finite configuration space X, we have

Eo £ min{E(x):x € X}, Xo £ {x €X:E(x) = Eg}.

Definition 1.1. The energy gap AE is defined to be the difference between the ground state energy level
and the next lowest energy level, i.e.

AE £ min{E(y) — Eg:y € X\ Xo}.
Let X1 = {x € X : E(x) — Eg = AE} be the set of states with the energy level Eg + AE.

Let the energy difference from the ground state energy be AE(x) £ E(x) — Eo, then we can write the
internal energy in terms of ground state X, the ground state energy E, and the energy difference AE(x) as

U(B) = )_ E(x)up(x) =} (Eo+AE(x))pup(x) =Eo+ ) AEpg(x)+ ) AE(x)up(x).
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The partition function Z(p) can be written in terms of Xy, Ey and AE(x) as

Z(p)= L e P 4 T e B — o (wa yefre Y e-ﬁAE(’”).
)
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We can also write the Boltzmann distribution in terms of Xy, Eg and AE(x) as
( ) e~ PE() e—BE(x) e~ BAE(x)
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From the above, it can be seen that for x ¢ Xy, yg(x) is of the order of ¢~PAE for large B. Therefore, we can
write the internal energy for large B, in terms of Xy, X1, and energy gap AE as

U(B)=Eo+ Y. AE(x)up(x)=Eo+ Y AEug(x)+ Y. AE(x)ug(x) = U(B)=Eo+O(e FAF)
x€X\Xg x€Xq x€X\ (XoUXq)

Recall that log|Xy| is the entropy of the uniform distribution over the ground state. Hence, we can write
the canonical entropy for large f in a similar fashion

S(p) =log|Xo| + ©(eFAF).
Combining the expression for internal energy and canonical entropy, we can write the free energy for large
B as
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F(B) =Eo — Blog\x(ﬂ +0(e PAF).
In many settings, the high temperature case is not very interesting since the system is almost uniformly
random. S o, we now consider a few example systems and study the thermodynamic potentials in the
general case and in the low temperature limit where f — oc.

Example 1.2 (Two level system). Consider a system consisting of only two states, X = {1,2} with the
energy function given by E(1) = €1, E(2) = e,. Without loss of any generality, we can assume €] < €3,
and consequently define the energy gap as A = € — €. The partition function can be computed to be

Z(B) = Y e PEW) =P 4 =Pz — p=Per(1 4 =P2),
xeX

and the Boltzmann distribution is given by
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We can compute the free energy as

F(B) = —llogZ(‘B) = —llog (eﬁ€1(1 + eﬁA)> = — 11og(1 + e~ PR,
P P p
The internal energy can be computed to be
€1+ (61 +A)e P e hA
= E = — A .
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We can either compute the canonical entropy directly as S(B) = H(pg) or compute it to be

e~ hA
S(B)=pBU(B) —F(B)) = 5Am +log(1+e7P4).

From the above equations, we see that, at low temperatures (for high values of g),
U(B) =e1+O(eFH), S(B) =log(1) + O(e P2).

which is intuitive, since €; is the energy of the ground state and log(1) = 0 is the entropy of the uniform
distribution over the ground state since it consists of only one state, and the extra terms are in the order
of e P2, which was what was expected.



Example 1.3 (Cylindrical bottle). Consider a single particle in a cylindrical bottle with configuration
space X = B x [0,d], where the base of the cylinder B is of arbitrary shape with area |B|. Let the energy
function be the potential energy, E(x) = wh(x), where h(x) is the height of x from the base of the
cylinder and w is a scalar. We can then compute the partition function for the continuous Boltzmann

distribution as ; 8]
B
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The free energy is then given by
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The internal energy is given by
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From the above, we can determine the canonical entropy as

d 1— —Bwd B d
S(8) = u(p) (9 =1~ B ol +10g 1 ) <o (1) -

In the low temperature limit, we see that the second term vanishes. Comparing it with the intuition

that at low temperatures, the entropy is the logarithm of the size of the ground state, we see that in the

low temperature limit, the particle in the cylinder occupies a volume of order |§ ¢ Since the area of the

base is | B|, the cylinder is occupied up to a height of order ﬁ from the base.

Example 1.4 (Spherical bottle). Consider the system in which a particle is confined to a sphere X of
radius R centred at (R,0,0) in the cartesian coordinate, where the configuration space is given by

X = {(x1,%2,%3) : (x; — R)® + 3 + ¥ < R*}.
Let the energy function be the potential energy, proportional to the height from the (x,,x3) plane, i.e,
E(x) = wx.

Then, we can write the partition function as
2R
Z(p) = / e PN gy dxydxs = / dxje Pwn / dxodxz,
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where Sy, is the subset of X at height x; from the (x2,x3) plane. Clearly, Sy, is a circle of radius
R? — (x1 — R)? and hence its area is 71(R?> — (x; — R)?) = (2Rx; — x2). Therefore, we can compute
the partition function to be

2R

Now, we can calculate the free energy in terms of partition function as
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and internal energy as the expected energy under the Boltzmann distribution as

U(B) = (B) = 5755 [ wmae P = s | * (2Ru — 12)e oy,

We can explicitly compute the integration to obtain
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From substituting equation (1) for the partition function in above, we obtain in the low temperature
limit (for B large)
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Using the expansion ﬁ =1+ x+ x>+ ..., we obtain
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Therefore, the canonical entropy in the low temperature limit is given by

S(6) = BU(B) ~ E(p) = p5 + 0 () +1o8 (s ) =105 (i3 )+ (3.

In a low temperature state, since the distribution is uniform over the ground state and the entropy is
the logarithm of the size of the ground state, we see intuitively that the particle occupies a volume of

the order of (2[57551622) at the bottom of the sphere.

2 Fluctuation-dissipation relations

Until now, we have considered systems in which the energy function is purely a function of the state. Now,
we consider systems in which the energy function is parametrized by a real scalar A and hence is of the
form E,(x), or any configuration x € X. We further assume that the parametrization is smooth and the
energy function can be expanded into a Taylor series about a value Ag. Thus, we have
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From equation (2), we can expand the following ratio of partition functions as
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Using the Taylor’s expansion for the exponential e = 1 + x + @(x?), we obtain
oE
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We can denote the Boltzmann distribution for state x for parameter A as pg ) (x) = % and expected

value of an observable O under Boltzmann distribution g, as (O),. Substituting equation (@) in equa-



tion (@), we obtain
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Using this expansion for partition function, we can infer the behavior of the system at parameter value A in

the neighborhood of Ay.
We can find the partial derivative of free entropy ®,(B) = logZ,(B) with respect to the parameter A
evaluated at the value Ag as
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Theorem 2.1 (Fluctuation-dissipation theorem). For any observable O : X — R,
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Where the last equality follows from eq @), which implies that
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where (X;Y'), denotes the covariance of X and Y under the Boltzmann distribution for parameter A.

Proof. Using equation (3) for expansion of e PEA(*) in terms of e PE™) and equation (4) for expansion of
the partition function Z, (x) in terms of Z,,(x), we can write the expectation of observable O for system
parameter A in the neighborhood of A as
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Using the expansion ﬁ =1+y+y?+ .., the denominator can be brought to the numerator, to obtain

(O = Z ‘uﬁ'/\o(x)o(x) [1 —B(A = Ao) % (x) +O((A — AO)Z)] X |1+ B(A—Ag) < g—i > +0O((A _)\0)2)]
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+O((A = Ap)?).

Result follows from the definition of covariance under the Boltzmann distribution. O
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