
Lecture-08: Ferromagnets and Ising Model

1 Ferromagnets and Ising models

Magnetic materials contain molecules with individual magnetic moments, that tend to align the external
magnetic field felt by the molecule. Magnetic moments of different molecules interact with each other. In
many materials, the energy is lower when the moments align.

A simple mathematical model for considering a number of particles with interacting moments is the
Ising model, which describes the magnetic moments by Ising spins localized at the vertices of a certain
region of a d-dimensional cubic lattice L. The cubic lattice L is determined by the vertices [L]d and the
edges ((i, j) ∈ [L]d × [L]d : ∑d

k=1 |ik − jk|= 1) between the nearest neighbors. At each coordinate i ∈ [L]d, the
configuration of a particle is an Ising spin σi ∈ X = {−1,1}. We have shown an example configuration of
Ising spins for L = 5 and d = 2 in Figure 1.

1.1 Energy function

Let N = Ld, then the N particle system configuration σ is given by assigning the values of spins for each
of the N particles as σ = (σ1,σ2, . . . ,σN). The space of configuration is XN = {−1,1}N . The energy of an N
particle configuration σ is given by

E(σ) = −∑
(i,j)

σiσj − B ∑
i∈[L]d

σi. (1)

where the sum over (i, j) runs over all the unordered pairs of sites i, j ∈ [L]d which are nearest neighbors
and B is the applied external magnetic field.

Determining the free energy density f (β) in the thermodynamic limit for this model is a non-trivial
task. In 1924, Ernst Ising solved the d = 1 case and showed the absence of phase transitions. In 1948, Lars
Onsager solved the d = 2 case, exhibiting the first soluble ‘finite-dimensional’ model with a second-order
phase transition. In higher dimensions, the problem is unsolved, although many important features of the
solution are well understood.

1.2 Temperature limits

The two limiting cases that can be considered are at high and low temperatures. At high temperature when
β → 0, the energy no longer matters and the Boltzmann distribution is uniform over all configurations
σ ∈ XN . That is,

µβ(σ) =
1

2N .

At low temperature when β→∞, the Boltzmann distribution concentrates onto the ground state(s). In the
absence of external magnetic field, i.e B = 0, the two degenerate ground states are given by,

σ+ = (σi = 1 : i ∈ [L]d), σ− = (σi = −1 : i ∈ [L]d).

If the magnetic field is set to some non-zero value, one of the two configuration dominates. The ground
state is σ+ if B > 0 and the ground state is σ− if B < 0. To analyse this behavior upon the application of a
magnetic field, We define a rescaled magnetic field x = βB, with β→ 0 or β→∞, keeping x fixed. With this,
we will subsequently study some of the qualitative properties of the resultant model.
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Figure 1: A configuration of a two-dimensional Ising model with L = 5. There is an Ising spin σi on each
vertex i, shown by an arrow pointing up if σi = 1 and pointing down if σi = −1. The energy (1) is given by
the sum of two types of contributions: (i) a term−σiσi for each edge (i, j) of the graph, such that the energy
is minimized when the two neighboring spins σi and σj point in the same direction; and (ii) a term−Bσi for
each site i, due to the coupling to an external magnetic field. The configuration shown here has an energy
−8 + 9B.

Definition 1.1 (Expected Spin). Consider a ferromagnetic Ising model whose energy function is given by,

E(σ) = −∑
(ij)

σiσj − B ∑
i∈L

σi.

Let us assume that the spins are non-interacting, then, the total energy of the system due to all possible
configurations is given by,

E(σ) = −B ∑
i∈L

σi. (2)

The corresponding partition function is

Z(β) = ∑
σ

exp(−βE(σ)),

Z(β) = ∑
σ1=σ2=...=σN=±1

exp(βB ∑
i∈L

σi). (3)

The partition function for a single spin with energy E(σi) = −Bσi is therefore,

Zi(β) = ∑
σi=±1

exp(−βE(σi)),

Zi(β) = eβB + e−βB,
Zi(β) = 2cosh(βB). (4)

At each site, the probability of an up spin or a down spin is given by Boltzmann’s distribution,

P(σi) =
exp(−βE(σi))

Zi(β)
. (5)

Therefore, the average value of a single spin in a region L is

〈σi〉 = ∑
σi=±1

P(σi)σi,

〈σi〉 =
eβB − e−βB

Zi(β)
,

〈σi〉 = tanh(βB). (6)

From Fig. 1, it can be observed that at low temperatures (β → ∞) all the spins are either up or down
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Figure 2: Variation of average spin in a region with temperature (β = 1/T)

depending on the external magnetic field (B). However, at high temperatures (β→ 0) the spins are random
due to which the average spin 〈σi〉 → 0. Summarising, the expected value of any spin in a region L,

〈σi〉 =
{

tanh(x), for β→ 0
tanh(Nx), for β→∞

Definition 1.2 (Average Magnetization). The extent of alignment in a region due to an external magnetic
field (B) is given by average magnetization,

MN(β, B) =
1
N ∑

i∈L

〈σi〉

MN(β, B) is an odd function of B due to the symmetry between up and down directions, as a consequence,
MN(β,0) = 0.

Definition 1.3 (Spontaneous Magnetization). The alignment in a region due to an external magnetic field
can be analysed using spontaneous magnetization,

M+(β) = lim
B→0+

lim
N→∞

MN(β, B).

A few remarks about spontaneous magnetization,

1. At low temperatures (β→ ∞) with B→ 0+, the alignment of spins is σ+ = (σi = 1, ∀i) due to which
M+(∞) = 1

2. At high temperatures (β→ 0), the alignment of spins are random due to which M+(0) = 0

3. The critical temperature Tc = 1/βc is the one at which a transition in the phase of the system occurs

4. Spontaneous magnetization is always zero in the high temperature phase ∀d (Paramagnetic Phase)

5. In one-dimensional systems (d = 1), a phase transition occurs at Tc = 0 =⇒ M+(∞) = 0, ∀β < βc

6. For d ≥ 2, the critical temperature is non-zero, and M+(β) > 0, ∀β > βc(d)
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1.3 The one-dimensional case

Figure 3: Illustration of an one-dimensional model with sites and their respective spins (arrows)

Consider a one-dimensional system (d = 1) of N spins, with energy (E(σ))

E(σ) = −
N−1

∑
i=1

σiσi+1 − B
N

∑
i=1

σi.

The partial partition function where the configurations of all spins σ1, · · · ,σp have been summed over, at
fixed σp+1:

zp(β, B,σp+1) = ∑
σ1,...,σp

exp
[

β
p

∑
i=1

σiσi+1 + βB
p

∑
i=1

σi

]
. (7)

Expressing (7) recursively,

zp(β, B,σp+1) = ∑
σp

exp
[

βσpσp+1 + βBσp

]
∑

σ1,...,σp−1

exp
[

β
p−1

∑
i=1

σiσi+1 + βB
p−1

∑
i=1

σi

]
,

zp(β, B,σp+1) = ∑
σp=±1

T(σp+1,σp)zp(β, B,σp),

where T(σp+1,σp) := exp[βσp+1σp + βBσp] is a 2× 2 transfer matrix:

T =

[
eβ+βB e−β−βB

e−β+βB eβ−βB

]
.

The partition function of the system with N spins can be written using (7) as

ZN(β, B) = ∑
σN

zN−1(β, B,σN)exp(βBσN).

Introducing the scalar product between two vectors as (a,b) = a1b1 + a2b2, the partition function can now
be expressed in matrix form as,

ZN(β, B) = (ψL, TN−1ψR), (8)

where, ψL =

[
exp(βB)

exp(−βB)

]
and ψR =

[
1
1

]
. The eigenvalues of the transfer matrix T are,

λ1,2 = eβ cosh(βB)±
√

e2β sinh2(βB) + e−2β. (9)

Let ψ1 and ψ2 be the corresponding eigenvectors, then,

ψR = u1ψ1 + u2ψ2. (10)
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Using (9) and (10) in (8) we have,

ZN(β, B) =
(

ψL,
[

λN−1
1 0
0 λN−1

2

][
u1 0
0 u2

][
ψ1
ψ2

])
,

ZN(β, B) =
(

ψL,
[

λN−1
1 u1 0

0 λN−1
2 u2

][
ψ1
ψ2

])
,

ZN(β, B) = u1(ψL,ψ1)λ
N−1
1 + u2(ψL,ψ2)λ

N−1
2 . (11)

Definition 1.4 (Free Entropy Density). It is given by

φ(β, B) = lim
N→∞

1
N

φN(β, B),

φ(β, B) = lim
N→∞

1
N

log ZN(β, B)

However, for finite β, in the large N limit, the partition function is dominated by the largest eigenvalue λ1,
and therefore

φ(β, B) = logλ1. (12)

Definition 1.5 (Expected Spin). Using the transfer matrix we can compute the expected value of a spin;

〈σi〉 = ∑
σ

P(σi)σi,

=
σi exp

(
β ∑N−1

j=1 σjσj+1 + βB ∑N
j=1 σj

)
Z(β)

,

= ∑
σ1,σ2,...,σN

zi−1(β, B, i)σi exp

(
β

N−1

∑
j=i

σjσj+1 + βB
N

∑
j=i

σj

)
,

〈σi〉 =
1

ZN(β, B)
(ψL, Ti−1σ̂TN−iψR), (13)

where, σ̂ =

[
1 0
0 −1

]
.

Definition 1.6 (Average Magnetization). It can be computed by averaging over alignments in a region. We
know that,

MN(β, B) =
1
N

N

∑
i=1
〈σi〉,

Simplifying (13) and using (11),

MN(β, B) =
1
N

N

∑
i=1

(
u1(ψL,ψ1)λ

N−1
1 − u2(ψL,ψ2)λ

N−1
2

u1(ψL,ψ1)λ
N−1
1 + u2(ψL,ψ2)λ

N−1
2

)
,

In the thermodynamic limit,

lim
N→∞

MN(β, B) =
sinh(βB)√

sinh2(βB) + e−4β
=

1
β

∂φ

∂B
(β, B). (14)
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This relation can be easily verified using (12),

1
β

∂φ

∂B
(β, B) =

1
βλ1

βeβ sinh(βB) +
2βeβ sinh(βB)cosh(βB)√

sinh2(βB) + e−4β

 ,

=
βsinh(βB)

βλ1

 λ1√
sinh2(βB) + e−4β

 ,

1
β

∂φ

∂B
(β, B) =

sinh(βB)√
sinh2(βB) + e−4β

.

For β < ∞, the average magnetization is an analytic function of β and B. At any non-zero temperature, the
spontaneous magnetization is zero,

M+(β) = 0, ∀β < ∞.

Definition 1.7 (Susceptibility). Intuitively, susceptibility is the tendency of a site in a region to have the
same alignment as its neighbors. The susceptibility associated with average magnetization is given by,

χM(β) =
∂M
∂B

(β,0) = βe2β. (15)

The system behaves like the spins were blocked into groups of χ(β)/β spins each. The spins in each group
are restricted to a value, while spins in different groups are independent. For B = 0 and δN < i < j <
(1− δ)N, one finds at large N,

〈σiσj〉 = e−|i−j|/ξ(β) + Θ(e−αN),

where, ξ(B) = −1
logtanh β is the distance below which two spins are well correlated, and is called the corre-

lation length of the model. This length increases with decrease in temperature, that is, spins become more
correlated at lower temperatures. The relation between correlation length and susceptibility is given by,

χM(β) = β
∞

∑
i=−∞

e
−|i|
ξ(β) + Θ(e−αN). (16)

This makes it evident that a large susceptibility must correspond to a large correlation length.

1.4 The Curie-Weiss Model

The exact solution of the one-dimensional model, lead Ising to think that there couldn’t be a phase transition
in any dimension. This was debunked by a qualitative theory of ferromagnetism which was put forward
by Pierre Curie. It assumed the existence of a phase transition at non-zero temperature Tc (Curie point) and
a non-vanishing spontaneous magnetization for T < Tc. The dilemma was eventually solved by Onsager
solution of the two-dimensional model.

Consider N Ising spins σi ∈ {±1} and a configuration σ = (σ1, . . . ,σN). Unlike the Ising model, the
spins are not a part of a d−dimensional lattice, instead, they all interact in pairs. The absence of any finite-
dimensional geometrical structure makes the Curie-Weiss model one among the mean-field models. The
energy function, in the presence of a magnetic field B, is given by:

E(σ) = − 1
N ∑

(ij)
σiσj − B

N

∑
i=1

σi.

It needs to be mentioned that the summation over (ij) involves O(N2) terms of order O(1). Therefore, the
energy function is scaled by 1/N to obtain a non-trivial free-energy density in the thermodynamic limit.
The instantaneous magnetization which is a function of the configuration:

m(σ) =
1
N

N

∑
i=1

σi.
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