
Lecture-10: Many Random Variables

1 Qualitative view of Random Variables

Physical systems of particles can be modelled by assigning a random variable to state of each particles.
Here we assume the particles have no interaction or interaction is minimal. Thus for N particles we have
an N length vector x = (x1, x2, . . . , xN) with probability

PN(x) = PN(X1, . . . , xN). (1)

An instance of this would be Boltzmann distribution for a physical system with N degrees of freedom.
Shannon Entropy of this distribution is

HN = −ElogPN(x) (2)

Typically HN grows linearly with N for large N. So entropy per variable hn = HN/N has a finite limit;so
we define a quantity h.

Definition 1.1. h : limN→∞ hN

We will be interested in defining the quantity

r(x) = 1/Nlog
[
1/PN(x)

]
(3)

to characterize any particular realization x. We would like to know how close is r(x) to hN . In most cases
r(x) is peaked around r = hN . Often probability distribution of r(x) behave exponentially with

P{r(x) ≈ ρ} = e−NI(ρ) (4)

where I(ρ) has minimum at ρ = h. and I(h) = 0 From this observation and (3) we have

PN(x) = e−Nh (5)

Total probability of realization x with r(x) ≈ h is 1. This will imply that number of configurations with
major contribution to probability is eNh.This in general is a small number when compared to total number
of configurations XN .

Number of typical configurations = eNh << XN (6)

This has a lot of implications.For example if we want to estimate an observable O we can sample configu-
ration and it will give good estimates because major part of total probability is distributed among typical
configurations. But it takes orderof eN(log|X |)−h time to generate a sample. Monte Carlo methods provide
better solution for this problem

2 Large deviations for independent variables

Theorem 2.1. (Sanov) Let s1, . . . sN ∈ X be N i.i.d random variables drawn from the probability distribution p(x),
and let K ⊂M(X ) be a compact set of probability distributions over X . If q is the type of (s1, . . . , sN) then

P
[
q ∈ K

]
= e−ND(q∗‖p) (7)

where q∗ = arg minq∈KD(q ‖ p), and D(q ‖ p) is the Kullback-Leibler divergence.
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Proof. Now for a particular q′

(P(qs = q′)) = ∏
x∈X

P(Nq′(x)times x appears in s)

=

(
N

Nq′(x1), Nq′(x2), . . . , Nq′(x|X |)

)
∏

x∈X
p(x)Nq′(x)

=

(
N!

Nq′(x1)!, Nq′(x2)!, . . . , Nq′(x|X |)!

)
∏

x∈X
p(x)Nq′(x)

(8)

Using Stirlings equation
log2 n! = n log2 n (9)

n! = 2n log2 n (10)

N!
(Nq′(x1))!(Nq′(x2))! . . . (Nq′(x|X |))!

= 2N log N−Nq1 log Nq1−Nq2 log Nq2 ...Nq|X | log Nq|X | (11)

∏
x∈X

p(x)Nq′(x) = ∏
x∈X

2Nq′(x) log p(x) (12)

We have KL Divergence D as

D(q‖p) = ∑
x

q(x) log
q(x)
p(x)

(13)

From 8, 10, 11, 12 we have
P(qs = q′) = ∏

x∈X
2−ND(q‖p) (14)

By approximating with leading term in exponential we have

P(qs = q′) = e−ND(q∗‖p) (15)

Example 2.2. A simple model of a column of the atmosphere is obtained by considering N particles in the
earth’s gravitational field.The state of particle i ∈ {1,2, . . . , N} is given by a single coordinate zi ≥ 0 which
measures its height with respect to level. To simplify , we make assumption zi is integer.

E = ∑
i=1

Nzi (16)

Consider a configuration : z1, . . . ,zN . Its type can be interpreted as:

ρ(z) = 1/N
N

∑
i=1

1{z=zi} (17)

ρeq(z) = 〈ρ(z)〉 = (1− e−β)e−βz (18)

Using Boltzmann probability distribution; expected density profile can be computed as follows.

Partition function Z(β) = ∑
x∈X

e−E(x) =
∞

∑
z=0

e−βz =
1

1− e−β
. (19)

So probability distribution follows

µβ(x) =
1

Z(β)
e−βE(x) = (1− e−β)e−βz (20)
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We compute the probability of getting a general exponential density profile with parameter λ:

ρλ(z) = (1− e−λ)e−λz (21)

For that we find the KL divergence between ρλ and ρeq

D(ρλ‖ρeq) = ∑
z

ρλ(z) log
ρλ(z)
ρeq(z)

= log
1− e−λ

1− e−β
+

β− λ

eλ − 1
(22)

We now plot KL divergence as a function of λ in figure 1.

Iβ(λ) = D(ρλ‖ρeq) (23)

It can be noted from the figure 1 that small values of λ are very rare.

Figure 1: Equilbrium density profile

3 How typical is an empirical average?

The empirical average of a measurement is given by:

f̄ =
1
N

N

∑
i=1

f (si) (24)

Corollary 3.1. Let s1, . . . , sN be N i.i.d random variables drawn from a probability distribution p(.). Let f : X →R

be a real-valued function and let f̄ be its empirical average. If A ⊂ R is a closed interval of the real axis, then

P
[

f̄ ∈ A] = e[−NI(A)], (25)
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where
I(A) = min

q

[
D(q‖p)| ∑

x∈X
q(x) f (x) ∈ A] (26)

Proof. We note that f̄ is related to the type of sequence x1, x2, . . . xn as f̄ = ∑x q(x) f (x). Keeping in mind
Sanov theorem , we define a set as follows

K =
{

q ∈M(X)| ∑
x∈X

q(x) f (x) ∈ A
}

(27)

Then the result follows directly from Sanov by camparing K with set in Sanov and I(A) with D(q∗‖p).

Example 3.2. Let s1, ..., sN be N i.i.d random variablesdrawn from a probability distribution p(.) with
bounded support. Show that, to leading exponential order,

P{s1 + · · ·+ sN ≤= 0} = { inf
z≥0

Ee−zs1}N (28)

Example 3.3. We look at N particles in a gravitational field, and consider the average height of the particles

z̄ =
1
N

N

∑
i=1

zi. (29)

Expected value of this quantity is
Ez̄ = zeq = (eβ − 1)−1. (30)

The probability of a fluctuation in z̄ is easily computed using the obove corollary.For z > zeq we obtain

P(z > z̄) = e−NI(z), (31)

where

I(z) =
(
1 + z

)
log
(1 + zeq

1 + z
)
+ z log

( z
zeq

)
(32)
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