Lecture-10: Many Random Variables

1 Qualitative view of Random Variables

Physical systems of particles can be modelled by assigning a random variable to state of each particles.
Here we assume the particles have no interaction or interaction is minimal. Thus for N particles we have
an N length vector x = (x1,xy,...,XxN) with probability

Pn(x) = Py(X1,...,xN)- 1)

An instance of this would be Boltzmann distribution for a physical system with N degrees of freedom.
Shannon Entropy of this distribution is
Hy = —ElogPn(x) 2

Typically Hy grows linearly with N for large N. So entropy per variable h, = Hy/N has a finite limit;so
we define a quantity h.

Definition 1.1. h: limy o hn

We will be interested in defining the quantity
r(x) =1/Nlog[1/Pn(x)] 3)

to characterize any particular realization x. We would like to know how close is 7(x) to hy. In most cases
r(x) is peaked around r = hy. Often probability distribution of r(x) behave exponentially with

P{r(x) mp} = N0 4)
where I(p) has minimum at p = h. and I(h) = 0 From this observation and (3) we have
Py(x) = e~ (5)

Total probability of realization x with r(x) ~ h is 1. This will imply that number of configurations with
major contribution to probability is eN".This in general is a small number when compared to total number
of configurations XN,

Number of typical configurations = eN" << XN (6)

This has a lot of implications.For example if we want to estimate an observable O we can sample configu-
ration and it will give good estimates because major part of total probability is distributed among typical

configurations. But it takes orderof eN(1°8|*1)=" time to generate a sample. Monte Carlo methods provide

better solution for this problem
2 Large deviations for independent variables

Theorem 2.1. (Sanov) Let s1,...sy € X be N i.i.d random variables drawn from the probability distribution p(x),
and let K C M(X') be a compact set of probability distributions over X. If q is the type of (s1,...,sN) then

P[q e K] =e NPl 7)

where g* = arg minquD(q || ), and D(q || p) is the Kullback-Leibler divergence.



Proof. Now for a particular 4’

(P(gs=1q")) = | [ P(N¢g'(x)times x appears in s)
xekX

= N Ng'(x)
(Nq/(xl)/Nq/(xz),...,Nq’(xIX)) [T p)™

xeX

_ N! Ne'(3)
B (N‘i’(x1)!,Nq’(x2)!,...,Nq'(x|X|)!> xle_/'[Yp(X) q

Using Stirlings equation
log, n! = nlog,n

n! = 2nlog2n

N' — 2N10gN7qu loqulquzloquz..NqP(‘ 1Oqu\X\
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I p(x)Nq’(X) =11 oNg'(x)log p(x)
xeX xeX
We have KL Divergence D as

Y () oe 1)
D(qllp) —;q( )10gp(x)

From[8][10} [11} [12] we have
Pigs=q)=1] 2—-ND(4lp)

xekX

By approximating with leading term in exponential we have

P(gs=q') = e~ ND(a[lp)
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Example 2.2. A simple model of a column of the atmosphere is obtained by considering N particles in the
earth’s gravitational field.The state of particle i € {1,2,...,N} is given by a single coordinate z; > 0 which

measures its height with respect to level. To simplify , we make assumption z; is integer.
E=) Nz
i=1

Consider a configuration : z1,...,zy. Its type can be interpreted as:
N
p(Z) = 1/N2]1{z:z,~}
i=1

() = (p(2)) = (1— e P)o P>

Using Boltzmann probability distribution; expected density profile can be computed as follows.

Partition function Z(B) = CE() _ ¥ g be — )
artition function Z(f) = )_ e ;)e =

xeX

So probability distribution follows

pup(x) = Z(lﬁ)e_ﬁE(’() =(1—e PP

(16)
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We compute the probability of getting a general exponential density profile with parameter A

pa(z) = (1—eH)e

20
For that we find the KL divergence between p, and p.q
palz)  1—e*  p—A
P/\Hpeq ZP/\ log ( ) - log 1_cP + A —1 (22)
We now plot KL divergence as a function of A in figure
Ig(A) = D(pallpeq) (23)
It can be noted from the figureI|that small values of A are very rare
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Figure 1: Equilbrium density profile

3 How typical is an empirical average?

The empirical average of a measurement is given by

N

F=x L)

(24)
Corollary 3.1. Lets1,...

sn be N i.i.d random variables drawn from a probability distribution p(.). Let f : X — R
be a real-valued function and let f be its empirical average. If A C R is a closed interval of the real axis, then

P[f € Al = elmNI(A)] (25)



where

I(A) =min [D(q[p)| }_ q(x)f(x) € A] (26)

q xeX

Proof. We note that f is related to the type of sequence x1,xy,...x, as f = ¥, q(x) f(x). Keeping in mind
Sanov theorem , we define a set as follows

K={ge M| L a(x)f(x) € A} 27)

xeX
Then the result follows directly from Sanov by camparing K with set in Sanov and I(A) with D(g*||p). O

Example 3.2. Let sq,...,s5 be N iid random variablesdrawn from a probability distribution p(.) with
bounded support. Show that, to leading exponential order,

P{sy++ - +sy <=0} = {inf Ee =1}V (28)
z>
Example 3.3. We look at N particles in a gravitational field, and consider the average height of the particles

1
N ¢
i

™M=

z= Zj. (29)

1

Expected value of this quantity is
Ez =z, =(ef 1)L (30)

The probability of a fluctuation in Z is easily computed using the obove corollary.For z > z,; we obtain

P(z>z) =e N, (31)
where 1+
Ze z
I(z) = (1+2)1 1) + zlog (— 32
(z) = (1+2)log (1) + zlog () (32)
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