
Lecture-11: Correlated Variables

1 Asymptotic equipartition

We can count the number of configurations X ∈ XN with either a given type q(x) or a given empirical
average f̄ of some observable f : XN→R. We say that ‘there are approximately 2NH(q) sequences with type
q’.

Proposition 1.1. The numberNK,N of sequences X ∈XN which have a type belonging to the compact set K⊂M(X)

behaves as NK,N
.
= 2NH(q∗), where q∗ = argmax{H(q) : q ∈ K}.

Proof. Let p(x) be the uniform probability distribution on X, then Pp {q ∈ K} = NK,N

|X|N
. From Sanov’s theo-

rem, we know that Pp {q ∈ K} .
= e−ND(q∗‖p). Since p is uniform over X, we have D(q‖p) = Eq log2 q(x) +

Eq log2 |X| = −H(q) + log2 |X|. Combining the above results, we get that

NK,N = Pp(q ∈ K)2N log2|X| .
= 2NH(q∗).

As a consequence of Sanov’s theorem, we know that for any i.i.d. random sequence X ∈ XN of N with
the common probability distribution p(x), the most probable type is p(x) itself, and that deviations are
exponentially rare in N. We expect that almost all the probability will be concentrated into sequences that
have a type close to p(x) in some sense. On the other hand, because of the above proposition, the number
of such sequences is exponentially smaller than the total number of possible sequences |X|N .

Let’s define what is meant by a sequence having a type ‘close to p(x)’. Given a sequence X, we introduce
the quantity empirical entropy defined as

r(X),− 1
N

log2 PN(X) = − 1
N

N

∑
i=1

log2 p(Xi).

Clearly, E [r(X)] = H(p).

Definition 1.2. A random sequence X ∈ XN is called ε-typical iff |r(X)− H(p)|6 ε.

Theorem 1.3. Let TN,ε be the set of ε-typical sequences, then the following hold.

(i) limN→∞ P{X ∈ TN,ε} = 1.

(ii) For large enough N, we have 2N(H(p)−ε) 6 |TN,ε|6 2N(H(p)+ε).

(iii) For any x ∈ TN,ε, we have 2−N(H(p)+ε) 6 P{X = x}6 2−N(H(p)−ε).

Proof. From Corollary to the Sanov’s theorem, we have P{X /∈ TN,ε}
.
= e−NI , where the exponent

I = min{D(q‖p) : q /∈ K} , where K =
{

q ∈M(X) :
∣∣Eqr(X)− H(p)

∣∣6 ε
}

.

(i) That is, we can write K = {q ∈M(X) : |D(q‖p) + H(q)− H(p)|6 ε}. It follows that p ∈ K and hence
I > 0. Therefore, limN→∞ P{X /∈ TN,ε} = 0.
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(ii) The compact set of types of the sequence X ∈ TN,ε is given by K. Let q∈K, then we have |D(q‖p) + H(q)− H(p)|6
ε, which implies that |H(q)− H(p)|6 ε. From the previous proposition, we have

2N(H(p)−ε) 6 |TN,ε|6 2N(H(p)+ε).

(iii) Recall that TN,ε =
{

x ∈ XN : |r(x)− H(p)|6 ε
}

, and hence for any x ∈ TN,ε we have P{X = x} =
2−Nr(x). The result follows.

Definition 1.4. The behavior described in the above theorem is called the asymptotic equipartition prop-
erty.

2 Correlated variables

For independent random variables in finite spaces, the probability of a large deviation is easily computed
by combinatorics. We now present some general result for large deviations of non-independent random
variables using Legendre transforms and saddle point methods.

2.1 Legendre transformation

Consider the joint distribution of a set of N random variables over the configuration space XN given by

PN(x) = PN(x1, . . . , xN), x ∈ XN .

Let f : X→R be a real valued function, and its empirical average

f (X) =
1
N

N

∑
i=1

f (Xi).

We showed that finite fluctuation of f is exponentially unlikely for i.i.d. random variables. We will show
the same for ‘weakly correlated’ random variables. In particular, let PN(x) be the Boltzmann distribution
of N particle interacting system, and f be a macroscopic observable. Then, we will show that the relative
fluctuation of macroscopic observables is small.

Assumption 2.1. The distribution of f follows a large-deviation principle, meaning that the asymptotic
behavior of the distribution at large N is

PN( f ) .
= e−NI( f ),

with a rate function I( f )> 0.

In order to determine the rate function, a useful method is to ‘tilt’ the measure PN(·) in such a way that
the rare events responsible for O(1) fluctuations of f become likely.

Definition 2.2. The logarithmic moment-generating function of f is defined as

ψN(t),
1
N

logE
[
eNt f (x)

]
, t ∈R.

When the large-deviation principle holds, we can evaluate the large-N limit of ψN(t) using the saddle
point method

ψ(t), lim
N→∞

ψN(t) = lim
N→∞

1
N

log
∫

d f e−NI( f )eNt f .

It follows that ψ(t) is the Legendre transform of I( f )

ψ(t) = sup
{

t f − I( f ) : f ∈R
}

.
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Since ψ(t) is supremum of affine functions in t, it is convex in t. Therefore, we can invert the Legendre
transform as

Iψ( f ) = sup
{

t f − ψ(t) : t ∈R
}

,

where Iψ( f ) is the convex envelope of I( f ). This procedure is useful when computing ψ(t) is easier than
the probability distribution PN( f ). The above method informally captures the essence of Gärtner-Ellis
theorem(explained in the following lecture).

Example 2.3. Consider the one-dimensional Ising model, with external magnetic field B = 0.We have
xi = σi ∈ {+1,−1}, and PN(σ) = exp[−βE(σ)]/Z the Boltzmann distribution with energy function

E(σ) = −
N−1

∑
i=1

σiσi+1

We want to compute the large deviation properties of the magnetization.

m(σ) =
1
N

N

∑
i=1

σi

In order to evaluate probability of a large fluctuation of m we can apply the moment generating function
of m.

ψN(t) =
1
N

logE
[
eNtm(σ)

]
=

1
N

logE

[
exp[t

N

∑
i=1

σi]

]
The above expectation is taken over Boltzmann distribution. Hence,

ψN(t) =
1
N

log
∑σ exp(β ∑N−1

i=1 σiσi+1 + t ∑N
i=1 σi)

∑σ exp(β ∑N−1
i=1 σiσi+1)

=
1
N

log
zn(β, t

β )

zn(β,0)

Using the relation between free entropy(φ(β)) and partition function(z(β)) for limiting value of N, we
get

ψ(t) = φ(β,
t
β
)− φ(β,0).

In one of the previous lectures we have derived the following formal expression for free entropy in one
dimensional Ising model.

φ(β, B) = log

[
eβ cosh(βB) +

√
e2β sinh2(βB) + e−2β

]
Therefore,

ψ(t) = log

[
eβ cosh t +

√
e2β sinh2 t + e−2β

]
eβ + e−β

= log

[
cosh t +

√
sinh2 t + e−4β

]
1 + e−2β
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Figure 1: Rate function for the magnetization of the one-dimensional ising model

and rate function,

Iψ(m) = sup
t∈R

{tm− ψ(t)}

Inference from figure 1: As β increases i.e as temperature decreases the probability of large fluctuations
increases.
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