
Lecture-12: The Gärtner-Ellis Theorem

1 The Gärtner-Ellis Theorem

This theorem is a powerful result which establishes the existence of a large deviation principle for processes
where the cumulant generating function tend towards a well behaved limit implying not-too-strong depen-
dence between successive values. It has several formulations out of that we will state a simplified version
of the general theorem which not required very high technical definitions.

Definition 1.1. For any function F : R→R, we say that x ∈R is an exposed point of the function F if there
exists t ∈R such that ty− F(y) > tx− F(x) for any y 6= x.

If F is convex, a sufficient condition for x to be an exposed point is that F is twice differentiable at x,
with F′′(x) > 0.

Theorem 1.2 (Gärtner-Ellis). Consider a function f : XN →R. We assume that for an N-length random sequence
X ∈ XN the normalized log moment generating function ψN(t) = 1

N logEetN f exists, and has a finite limit ψ(t) =
limN→∞ ψN(t), for any t ∈ R. Let Iψ be the inverse Legendre transform and E be the corresponding set of exposed
points of the function Iψ, then the following hold.

1. For any closed set F ∈R,

lim sup
N→∞

1
N

log PN { f ∈ F}6− inf
f∈F

Iψ( f ).

2. For any open set G ∈R,

lim sup
N→∞

1
N

log PN { f ∈ G}>− inf
f∈G∩E

Iψ( f ).

3. If ψ(t) is differentiable for any t ∈R, then the last statement holds true if the inf is taken over the whole set G
(rather than over G ∩ E ).

Proof. Since the Legendre transform is convex in t and its inverse is convex in f , we can write the Legendre
transform as the Legendre transform of its inverse.

Involutive Property of Legendre Transform
Arnold gives a geometric proof based on the fact that if g(p) = L( f )(p) then the graph y = xp− g(p)
is the tangent to the slope p to the graph y = f (x). Since f (x) is convex, all the tangent lines are below
the graph, so if we fix x = x0, the maximal value of x0 p− g(p) as a function of p is f (x0) (otherwise we
are below the graph, instead of on it). Thus L(g)(x0) = supp(x0 p− g(p)) = f (x0)

We can prove this algebraically. Noe let g(p) = L( f )(p) and we compute L(L( f ))(x) = L(g)(x).
L(g)(x) = supp(x)(x.p(x)− g(p(x))), where p(x) is defined by x = (∇g)(p(x)). Now, g is defined by
g(p) = supy(p)(p.y(p)− f (y(p))), where y(p) is defined by p = (∇ f )(y(p)). Therefore, we have

x = (∇g)(p(x)) = y(p(x))

and

L(g)(x) = sup
p(x)

(x.p(x)− g(p(x)))

= y(p(x)).p(x)− [p(x).y(p(x))− f (y(p(x)))]
= f (x)
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That is,

Iψ( f ) = sup
t∈R

[t f − ψ(t)], ψ(t) = sup
f
[t f − Iψ( f )].

Since ψ(t) = limN→∞
1
N logEetN f , it follows that the large-deviation principle holds for the function f with

a rate function Iψ( f ), such that PN( f ) .
= e−NIψ( f ).

The inverse Legendre transform yields an upper bound on the probability of a large fluctuation of the
macroscopic observable. This upper bound is tight unless a ‘first-order phase transition’ occurs, corre-
sponding to a discontinuity in the first derivative of ψ(t), as we saw in the low-temperature phase of the
Curie-Weiss model. It is worth mentioning that ψ(t) can be non-analytic at a point t∗ even though its first
derivative is continuous at t∗. This corresponds, to a ‘higher-order’ phase transition.

1.1 Typical sequences

From the previous lectures we know clearly the concept of typical sequences, more precisely, we want to
investigate the large deviation of the probability itself. We can re-write the log moment generation function
for the empirical entropy r(x) = − 1

N log PN(x), as

ψN(t) =
1
N

logE[etN f ] =
1
N

log∑
x

PN(x)etNr(x)

=
1
N

log∑
x

PN(x).PN(x)−t =
1
N

log∑
x

PN(x)1−t.

Let PN(x) = 1
ZN(β)

e−βEN(x) be the Boltzmann distribution with the energy function EN(x) and the partition

function ZN(β) = ∑x e−βE(x), then in terms of the free-energy density fN(β) =− 1
N log ZN(β), we can write

ψN(t) =
1
N

log∑
x

[
e−βEN(x)

ZN(β)

]1−t

=
1
N
(log∑

x
e−β(1−t)EN(x) − (1− t) log ZN(β))

= β(1− t) fN(β)− β fN((1− t)β).

Assuming that the thermodynamic limit f (β) = lim
N→∞

fN(β) exists and is finite, It follows that the Legendre

transform ψ(t) exists for the empirical entropy. We can apply the Gärtner-Ellis theorem to compute the
probability of a large fluctuation of the empirical entropy r(x).

ψ(t) == β(1− t) f (β)− β f ((1− t)β).

As long as f (β) is analytic, large fluctuations are exponentially rare and the asymptotic equiparti-
tion property of independent random variables is essentially recovered. This follows from the fact that
EP[r(X)] = h(PN) =

1
N H(PN), and the set of ε-typical sequences is

TN,ε =
{

x ∈ XN : |r(X)− h(PN)|6 ε
}

.
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1. Under certain conditions, we can show that lim
N→∞

PN {X ∈ TN,ε} = 1.

2. From the definition of r(x) and TN,ε, it follows that for any x ∈ TN,ε

2−N(h(PN)+ε) 6 PN(x)6 2−N(h(PN)−ε).

On the other hand, if there is a phase transition at β = βc, where the first derivative of f (β) is discontin-
uous, then the likelihood r(x) may take several distinct values with a non-vanishing probability. The same
thing can be seen from Curie - Weiss Model.

Example 1.3. consider a Markov Chain X0, X1, ..., Xi, .... taking values in a finite state space X , and assume
all the elements of transition matrix w(x→ y) to be strictly positive. Compute the large deviation properties
of of the empirical average 1

N ∑i f (Xi). One can show that the limit moment generating function ψ(t), exists,
and can be computed using the following recipe. Define the ‘tilted’ transition probabilities as wt(x→ y) =
w(x→ y)exp[t f (y)]. Let λ(t) be the largest solution of the eigenvalue problem.

ψ(t) = lim
N→∞

1
N

logE[exp[tN f ]]

= lim
N→∞

1
N

logE[exp[t
N

∑
i=1

f (xi)]]

= lim
N→∞

1
N

log ∑
X∈X N

exp[t
N

∑
i=1

f (xi)]Px0

N

∏
i=1

w(xi−1→ xi)

= lim
N→∞

1
N

log ∑
x∈X N

Px0

N

∏
i=1

w(xi−1→ xi)exp[t f (xi)]

This can be reduced to matrix multiplication.

ψ(t) = lim
N→∞

1
N

log P0WN
t 1

The moment generating function is simply given by ψ(t) = logλ(t). This result came from the Perron -
Frobenius Theorem.

The result of Perron-Frobenius theorem is convergence to steady state of homogeneous markov chain
is geometric with relative speed equal to the magnitude of the largest eigen value. The same result can be
found by applying SVD in the expression for ψ(t).

2 The Gibbs Free Energy

We provide a motivation for the Boltzmann distribution to be a natural choice for probability distribution
of the configuration of a physical system.

2.1 Variational principle

Consider a system with a configuration space X , and an energy function E : X→R. The Boltzmann distri-
bution is

µβ(x) =
e−βE(x)

Z(β)
= exp

(
−β(E(x) +

1
β

log Z(β))

)
= e−β(E(x)−F(β)),

where the ‘free energy’ F(β), is a function of the inverse temperature β defined by the fact that ∑x∈X µβ(x) =
1.
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Definition 2.1. We define the Gibbs free energy G : M(X)→R as the following real-valued functional over
the space of probability distributions on X

G[P] = ∑
x∈X

P(x)E(x) +
1
β ∑

x∈X
P(x) log P(x).

The Gibbs free energy should not be confused with the free energy F(β).

Proposition 2.2. The Gibbs free energy G : M(X)→R is a convex functional, and it achieves its unique minimum
on the Boltzmann distribution P = µβ. Moreover, G[µβ] = F(β), where F(β) is the free energy.

Proof. It is easy to rewrite the Gibbs free energy in terms of the KL divergence between P and the Boltzmann
distribution µβ

G[P] =
1
β ∑

x∈X
P(x) log

P(x)
e−βE(x)

=
1
β

D(P‖µβ) + F(β).

The relation between the Gibbs free energy and the KL divergence implies a simple probabilistic inter-
pretation of the Gibbs variational principle. Imagine that a large number N of copies of the same physical
system have been prepared. Each copy is described by the same energy function E(x). Now consider the
empirical distribution P of theN copies. Typically, P will be close to the Boltzmann distribution µβ. Sanov’s
theorem implies that the probability of an ‘atypical’ distribution is exponentially small in N :

P[P] .
= exp (−N (G[P]− F(β))) .

When the partition function of a system cannot be computed exactly, the above result suggests a general
line of approach for estimating the free energy: one can minimize the Gibbs free energy in some restricted
subspace of ‘trial probability distributions’ P. These trial distributions should be simple enough that G[P]
can be computed, but the restricted subspace should also contain distributions which are able to give a
good approximation to the true behavior of the physical system. For each new physical system one will
thus need to find a good restricted subspace.

2.2 Mean-field approximation

Mean-field approximation is taking the class of distributions over independent variables as the trial family.

Example 2.3 (Ising Model). Consider particles on the lattice L of nodes [L]d and edges ((i, j) : |i− j| =
1). Each particle at node i has spin σi ∈ X = {−1,1}. The energy function under the external magnetic
field B is given by

E(σ) = −1
d ∑
(i,j)

σiσj − B∑
i

σi.

We assume periodic boundary conditions, and choose the trial family of distributions to be

Qm(σ) = ∏
i

qm(σi),

where qm(σi) =
(1+m)

2 1{σi=1} +
(1−m)

2 1{σi=−1} for some m ∈ [−1,1]. That is, under the distribution Qm,
the spins are i.i.d. with mean m.

We can find the density of Gibbs free energy as

g(m; β, B),
G[Qm]

|L|d
= −1

2
m2 − Bm− 1

β
H(

1 + m
2

).

From the Gibbs variational principle, we have

fd(β, B)6 inf
m

g(m; β, B) = fCW(β, h)− 1
2

.
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Indeed, the mean-field approximation becomes better the larger the dimension d, and it is asymptoti-
cally exact for d→∞.
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