
Lecture-13: The Monte Carlo Method

1 The Monte Carlo Method

In fields like Statistical Physics and Combinatorial Optimization we often come across the problem of sam-
pling a configuration X ∈ XN from a given distribution P(X). This can be difficult when N is large, because
there are too many configurations and or because the distribution P(X) is specified by Boltzmann formula
with computationally infeasible Partition Function. This motivates the study of Monte Carlo Method.

1.1 Properties of Markov Chains

Let (Xt ∈ XN : t ∈ N) be a Markov chain with state space XN , and set of transition rates w(x→ y) with
x,y ∈ XN , which satisfy the following conditions.

(i) Irreducibility : For any pair of configurations x,y ∈ XN , there exists a path (x0, x1, . . . , xn) of length n,
connecting x0 = x and xn = y with non-zero probability, i.e. w(xi→ xi+1) > 0 for all i ∈ {0, . . . ,n− 1}.

(ii) Aperiodicity : For any pair of configurations x,y∈XN ×XN , there exists a positive integer n(x,y) such
that for any n ≥ n(x,y), there exists a path of length n connecting x and y with non-zero probability.
Notice that, for an irreducible chain, aperiodicity is easily enforced by allowing the configuration to
remain unchanged with non-zero probability: w(x→ x) > 0.

(iii) Stationarity : There exists a distribution π ∈M(XN) such that

∑
x∈XN

π(x)w(x→ y) = π(y) ∀y ∈ XN .

(iv) Reversibility : The transition probability satisfy the detailed balance equation

π(x)w(x→ y) = π(y)w(y→ x) ∀x,y ∈ XN .

Note : For Finite chains Irreducibility and Aperiodicity implies Stationarity.

Theorem 1.1. Let X0, X1, . . . , Xt, . . . be random variables distributed according to the Markov chain with transition
probabilites w(x→ y) and initial condition X0 = x0.Let the Markov chain satisfy the conditions (i) − (iii) . Let
f : XN →R be any real valued function. Then

1. The probability distribution of Xt converges to the stationary distribution:

lim
t→∞

P[Xt = x] = π(x).

2. Time averages converge to averages over the stationary distribution

lim
t→∞

1
t

t

∑
s=1

f (Xs) = ∑
x

π(x) f (x) almost surely.

The Goal is to design and simulate a process that converges to the stationary distribution of interest.
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2 Metropolis Chains

Goal : Given state space XN and stationary distribution π, find a Markov chain with transition probability
matrix P such that πP = π.
The approach of Metropolis chains is to first consider an initial base markov chain with certain transition
probability matrix and modify the transition probabilities appropriately so that the new chain has the de-
sired stationary distribution.

2.1 Symmetric base chain

Let ψ be a symmetric transition probability matrix of the base chain over XN .
Since ψ is symmetric and has vector of ones as an eigenvector, it is easy to see that ψ satisfies reversibility
with respect to uniform distribution on XN , i.e.

ψ1 = 1 =⇒ 1T

|XN |ψ =
1T

|XN | =⇒
1
|XN |ψ(x,y) =

1
|XN |ψ(y, x) ∀ x,y ∈ XN

Note that ψ(x, ·) is the distribution over next state, starting from state x. Define a(x,y) as the acceptance
probability of transition from x to y. The new chain evolves as follows : when at state x, a candidate move
is generated from distribution ψ(x, ·). If the proposed new state is y, then the move is ”accepted” with
probability a(x,y) and with remaining probability chain remains at x. Thus the transition probabilities of
the new chain becomes,

P(x,y) =

ψ(x,y)a(x,y) i f y 6= x
1− ∑

z:z 6=x
ψ(x,z)a(x,z) i f y = x

The transition matrix P has stationary distribution π if reversibility condition holds, i.e.

π(x)ψ(x,y)a(x,y) = π(y)ψ(y, x)a(y, x) ∀x 6= y

Define b(x,y) = π(x)a(x,y).Thus the condition becomes

b(x,y) = b(y, x) ∀x 6= y

By definition we see that,
b(x,y) ≤ π(x)

b(y, x) ≤ π(y)

Thus,
b(x,y) = b(y, x) ≤min{π(x),π(y)}

a(x,y) ≤min{1,
π(y)
π(x)

}

Choose

a(x,y) = 1∧
(

π(y)
π(x)

)
:= min{1,

π(y)
π(x)

}

This choice of acceptance probability is called Metropolis Hastings. The Metropolis Chain for probability
distribution π and symmetric transition probability matrix ψ is defined as

P(x,y) =


ψ(x,y)

[
1∧ π(y)

π(x)

]
i f y 6= x

1− ∑
z:z 6=x

ψ(x,z)
[
1∧ π(z)

π(x)

]
i f y = x

Remark : If the desired stationary distribution π is a Boltzmann distribution, this method has an advantage
that we don’t need to compute partition function explicitly which is computationally infeasible in many
cases.
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Example 2.1 (Metropolis algorithm for N-particle system). Consider a system of N Ising spins σ =
(σ1 . . . σN) with energy function E(σ) and inverse temperation β. We are interested in sampling the Boltz-
mann distribution µβ = e−βE(σ)

Zβ
. The Metropolis algorithm with random updatings is defined as follows.

Call σ(i) the configuration which coincides with σ but for the site i i.e.

σ(i) :

{
σ
(i)
j = σj i 6= j

σ
(i)
i = −σi

and let ∆Ei(σ) ≡ E(σ(i))− E(σ). At each step, an integer i ∈ [N] is chosen randomly with flat probability
distribution and the spin σi is flipped with probability

wi(σ) = exp{−βmax[∆Ei(σ),0]} = min{1,
µβ(σ

(i))

µβ(σ)
}

We can write transition probability matrix as

w(σ→ τ) =


1
N wi(σ) τ = σ(i) ∀i = 1,2, . . . , N

1− 1
N

N
∑

i=1
wi(σ) τ = σ

0 otherwise

Consider the detailed balance equation with respect to µβ

µβ(σ)wi(σ) = min{µβ(σ),µβ(σ
(i))} = µβ(σ

(i))wi(σ
(i))

Thus the chain is Irreducible and Reversible.

2.2 General base chain

The Metropolis chain can also be defined when the initial transition matrix is not symmetric. For a general
(irreducible) transition matrix ψ and an arbitrary probability distribution π on XN , the Metropolized chain
is executed as follows. When at state x, generate a state y from ψ(x, ·). Move to y with probability

π(y)ψ(y, x)
π(x)ψ(x,y)

∧ 1

and remain at x with the complementary probability. The transition matrix P for this chain is

P(x,y) =


ψ(x,y)

[
1∧ π(y)ψ(y,x)

π(x)ψ(x,y)

]
i f y 6= x

1− ∑
z:z 6=x

ψ(x,z)
[
1∧ π(z)ψ(z,x)

π(x)ψ(x,z)

]
i f y = x

3 Glauber Dynamics

Glauber Dynamics is similar to Metropolis chains. The chain evolves as follows: From state x , we choose
v ∈ [N] uniformly at random and move to new state according to πx,v defined as

πx,v(y) = π(y|Ω(x,v)) =

{
π(y)

π(Ω(x,v)) i f y ∈Ω(x,v)

0 i f y 6∈Ω(x,v)

where Ω(x,v) = {y ∈ XN : y(w) = x(w) ∀w 6= v}.
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Example 3.1 (Glauber Dynamics for N-particle system). For this system Ω(σ, i) = {σ,σ(i)}. Thus,

wi(σ) = πσ,i(σ(i)) =
µβ(σ

(i))

µβ(σ(i)) + µβ(σ)
=

exp(−βE(σ(i)))

exp(−βE(σ(i))) + exp(−βE(σ))

wi(σ) =
1

1 + exp(β∆Ei(σ))
=

1
2

[
1− exp(β∆Ei(σ))− 1

exp(β∆Ei(σ)) + 1

]
wi(σ) =

1
2

[
1− tanh

(
β∆Ei(σ)

2

)]
We can write transition probability matrix as

w(σ→ τ) =


1
N wi(σ) τ = σ(i) ∀i = 1,2, . . . , N

1− 1
N

N
∑

i=1
wi(σ) τ = σ

0 otherwise

Consider the detailed balance equation with respect to µβ

µβ(σ)wi(σ) =
µβ(σ)µβ(σ

(i))

µβ(σ(i)) + µβ(σ)
= µβ(σ

(i))wi(σ
(i))

Thus the chain is Irreducible and Reversible.

Definition 3.2. Given a configuration space XV for a graph G = (V, E), we can define Glauber dynamics
or Gibbs sampler to be a the following reversible Markov chain which has stationary distribution π, and
transition probabilities

P(x,y) =

{
1
N

π(y)
π(s(x,y)) , y ∈ s(x),

0, y /∈ s(x).

Here we define V(x,y) = {v ∈ V : x 6= y}, and the set of possible transitions s(x) =
{

y ∈ XV : |V(x,y)| = 1
}

,
and the set of possible transitions at vertex V(x,y) as s(x,y) =

{
z ∈ XV : zw = xw,w /∈ V(x,y)

}
.

Exercise 3.3. Show that the Glauber dynamics is a reversible Markov chain with the stationary distribution
π.
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