
Lecture-15: Distance from stationarity

1 The convergence theorem

Theorem 1.1 (Convergence Theorem). Let X : T→ XN be an irreducible and aperiodic Markov chain with tran-
sition probability matrix P and stationary distribution π. Then there exist constants α ∈ (0,1) and C > 0 such
that

max
x∈XN

∥∥πt
x − π

∥∥
TV 6 Cαt.

Proof. Since the Markov chain X is irreducible and aperiodic, there exists a positive integer r such that Pr

has strictly positive entries. Let Π be the matrix with |X|N rows, each of which is the row vector π. We
chose a δ > 0 sufficiently small such that

δ 6 min
{

Pr(x,y)
π(y)

: x,y ∈ XN
}

.

Let δ̄ = 1− δ, then we can define a matrix Q = 1
δ̄
(Pr − δΠ). We can verify that Q is a stochastic matrix by

right multiplying it with vector 1. We can also verify that for any stochastic matrix M, we have MΠ = Π
and if π is an invariant distribution of M, then ΠM = Π. We next show by induction that

Prk = (δΠ + δ̄Q)k = (1− δ̄k)Π + δ̄kQk.

The base case of k = 1 is true by definition. We assume the inductive hypothesis holds true for k = n, then

Pr(n+1) = PrnPr = [(1− δ̄n)Π + δ̄nQn]Pr = (1− δ̄n)Π + δ̄nQn((1− δ̄)Π + δ̄Q).

The first equality follows from the fact that ΠPr = Π and the second equality from the definition of stochas-
tic matrix Q. Since QnΠ = Π, we have

Pr(n+1) = (1− δ̄n)Π + δ̄nQn((1− δ̄)Π + δ̄Q) = (1− δ̄n+1)Π + δ̄n+1Qn+1.

Hence, the result follows from the induction. By post-multiplication with Pj, we get

Prk+j −Π = δ̄k(QkPj −Π).

We can write the total-variation distance between πt
x and π for t = rk + j∥∥πt

x − π
∥∥

TV =
∥∥∥Prk+j(x, ·)− π(·)

∥∥∥
TV

6 δ̄k
∥∥∥QkPj − π

∥∥∥
TV

6 δ̄k 6 Cαt,

for α = δ̄1/r and C = 1/δ̄.

1.1 Maximal distance from stationarity

Definition 1.2. The maximal distance between t-step distribution πt and stationary distribution π over all
initial configurations x ∈ XN is defined as

d(t), max
x∈XN

∥∥Pt(x, ·),π(x)
∥∥

TV .

The maximal distance between t-step distributions Pt(x, ·) and Pt(y, ·) over all initial configurations x,y ∈
XN is defined as

d̄(t), max
x∈XN

∥∥Pt(x, ·),π(x)
∥∥

TV .
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Lemma 1.3. The following relation between maximal distances is true,

d(t)6 d̄(t)6 2d(t).

Proof. It is immediate from the triangle inequality for the total variation distance that d̄(t)6 2d(t). To show
that d(t)?d̄(t), note first that since π is stationary, we have π(A) =?? ∑y∈XN π(y)Pt(y, A) for any set A.
Therefore,

Pt(x, A)− π(A) = ∑
y∈XN

π(y)(Pt(x, A)− Pt(y, A))6 ∑
y∈XN

π(y)
∥∥Pt(x, ·)− Pt(y, ·)

∥∥
TV 6 d̄(t),

by the triangle inequality and the definition of total variation. Maximizing the left-hand side over x and A
yields d(t)6 d̄(t).

Exercise 1.4. Show the following.

d(t) = sup
µ∈M(XN)

∥∥µPt − π
∥∥

TV , sup
µ,ν∈M(XN)

∥∥µPt − νPt∥∥
TV .

Lemma 1.5. The function d̄ is sub-multiplicative. That is, d̄(s + t)6 d̄(s)d̄(t).

Proof. Fix x,y ∈ XN and let Xs,Ys denote the configuration of a Markov chain with homogeneous transition
probability matrix P starting from initial state x,y respectively. Let (Xs,Ys) be the optimal coupling of
Ps(x, ·) and Ps(y, ·). Hence

‖Ps(x, ·)− Ps(y, ·)‖TV = P{Xs 6= Ys} .

We can write
Ps+t(x,w) = ∑

z∈XN

P{Xs = z}Pt(z,w) = EPt(Xs,w).

Hence, we can write for a set A,

Ps+t(x, A)− Ps+t(y, A) = E[Pt(Xs, A)− Pt(Ys, A)]6 E[d̄(t)1{Xs 6=Ys}] = d̄(t)P{Xs 6= Ys} .
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