
Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Projection). For a vector x ∈Rn, we can define πi : Rn→R is the projection of an n-length
vector onto its i-th component, such that πi(x) = xi.

Remark 1. For a subset A ⊆R and projection πi : Rn→R, we can write

π−1
i (A), {x ∈Rn : xi ∈ A} = R× . . . A · · · ×R.

Example 1.2. Consider a function f : Ω→ Rn, then f (ω) ∈ Rn and can be expressed in terms of its
components ( f1(ω), . . . , fn(ω)), where fi = πi ◦ f . For this function f , we can write the inverse image
of a set B ⊆Rn as

f−1(B), ∩n
i=1 {ω ∈Ω : (πi ◦ f )(ω) ∈ πi(B)} = ∩n

i=1 f−1
i (πi(B)).

Definition 1.3 (Random vectors). Consider a probability space (Ω,F, P) and a finite n ∈N. A random
vector X : Ω→Rn is a mapping from sample space to an n-length real-valued vector, such that for x ∈Rn,
the event

A(x), {ω ∈Ω : X1(ω)6 x1, . . . , Xn(ω)6 xn} = ∩n
i=1X−1

i (−∞, xi] ∈ F.

We say that the random vector X is F-measurable and the probability of this event is denoted by

FX1,...,Xn(x1, . . . , xn) ≡ FX(x), P(A(x)) = P({X1 6 x1, . . . , Xn 6 xn}) = P(∩n
i=1X−1

i (−∞, xi]).

The function FX : Rn → [0,1] is called the joint distribution function of a random vector X. The event
space generated by the random vector X is the smallest σ-algebra generated by the collection of events
(A(x) : x ∈Rn) and denoted by σ(X), σ(A(x) : x ∈Rn).

Theorem 1.4. Consider a probability space (Ω,F, P). For a finite n ∈N, X : Ω→Rn is a random vector if and only
if Xi , πi ◦ X : Ω→R random variables for all i ∈ [n]. In particular, σ(X) = σ(X1, . . . , Xn).

Proof. We will first show that X : Ω→ Rn implies that πi ◦ X is a random variable for any i ∈ [n]. For any
i ∈ [n] and xi ∈R, we take x = (∞, . . . , xi, . . . ,∞). This implies that B , π−1

i (−∞, xi] = R× . . . (−∞, xi] · · · ×
R ∈ B(Rn). Further, defining Ai(xi), X−1

i (−∞, xi], we observe from the definition of random vectors that

Ai(xi) = X−1 ◦ π−1
i (−∞, xi] = X−1(B) = A(x) ∈ F. (1)

We will next show that if Xi : Ω→R is a random variable for all i ∈ [n], then X , (X1, . . . , Xn) : Ω→Rn

is a random vector. For any x ∈Rn, we have Ai(xi) = X−1
i (−∞, xi] ∈ F for all i ∈ [n], from the definition of

random variables. From the closure of event set under countable intersections, we have

A(x) = ∩n
i=1 Ai(xi) ∈ F. (2)
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Definition 1.5. For a random vector X : Ω→Rn defined on the probability space (Ω,F, P), the distribution
of the ith random variable Xi , πi ◦ X : Ω→ R is called the ith marginal distribution, and denoted by
FXi : Ω→ [0,1] for all i ∈ [n].

Corollary 1.6 (Marginal distribution). Consider a random vector X : Ω→ Rn defined on a probability space
(Ω,F, P) with the joint distribution FX : Rn→ [0,1]. The i-th marginal distribution and can be obtained from the
joint distribution of X as

FXi (xi) = lim
xj→∞, for all j 6=i

FX(x).

Proof. For any i ∈ [n] and xi ∈R, we have X−1
i (−∞, xi] = A(x) for x = (∞, . . . , xi, . . . ,∞) from (1).

1.1 Independence of random variables

Definition 1.7 (Independent and identically distributed). A random vector X : Ω→ Rn defined on the
probability space (Ω,F, P) is called independent if

FX(x) =
n

∏
i=1

FXi (xi), for all x ∈Rn.

The random vector X is called identically distributed if each of its components have the identical marginal
distribution, i.e.

FXi = FX1 , for all i ∈ [n].

Remark 2. Independence of a random vector implies that events (Ai(xi) : i ∈ [n]) are independent for any
x ∈Rn.

Definition 1.8. A family of collections of events (Ai ⊆ F : i ∈ I) is called independent, if for any finite set
F ⊆ I and Ai ∈ Ai for all i ∈ F, we have

P(∩i∈F Ai) = ∏
i∈F

P(Ai).

Remark 3. In general, if two collection of events are mutually independent, then the event space generated
by them are independent. This can be proved using Dynkin’s π-λ Theorem.

Theorem 1.9. For an independent random vector X : Ω→ Rn defined on a probability space (Ω,F, P), the event
spaces generated by its components (σ(Xi) : i ∈ [n]) are independent.

Proof. For an we define a family of events Ai , (X−1
i (−∞, x] : x ∈ R) for each i ∈ [n]. From the definition

of independence of random vectors, the families (Ai ⊆ F : i ∈ [n]) are mutually independent. Since σ(Ai) =
σ(Xi), the result follows from the previous remark.

Definition 1.10 (Independent random vectors). To random vectors X,Y : Ω→ Rn defined on the same
probability space (Ω,F, P) are independent, if the collection of events (AX(x) : x ∈Rn) and (AY(y) : y ∈Rn)

are independent, where AX(x), ∩n
i=1X−1

i (−∞, xi] and AY(y), ∩n
i=1Y−1

i (−∞,yi].

Example 1.11 (Independent random vectors). Consider a set of vectors X = {(0,0,1), (1,0,0)} ⊆ R3.
Consider two independent coin tosses, such that Ω = {H, T}2 ,F= 2Ω and P(ω) = pk2(ω)(1− p)2−k2(ω),
where k2(ω) = ∑2

i=11{ωi=H}. We define random vectors

X = (0,0,1)1{ω1=H} + (1,0,0)1{ω1=T}, Y = (0,0,1)1{ω2=H} + (1,0,0)1{ω2=T}.

We can verify that X,Y : Ω→R3 are mutually independent random vectors, though we can also check
that X1, X3 are dependent random variables and so are Y1,Y3.

2



1.2 Discrete random vectors

Definition 1.12 (Discrete random vectors). If a random vector X : Ω→ X1× · · · ×Xn ⊆Rn takes countable
values in Rn, then it is called a discrete random vector. That is, the range of random vector X is countable,
and the random vector is completely specified by the probability mass function

PX(x) = P(∩n
i=1 {Xi = xi}) for all x ∈ X1 × · · · ×Xn.

Remark 4. For an independent discrete random vector X : Ω→ Rn, we have PX(x) = ∏n
i=1 PXi (xi) for each

x ∈Rn.

Example 1.13 (Multiple coin tosses). For a probability space (Ω,F, P), such that Ω = {H, T}n ,F =

2Ω, P(ω) = 1
2n for all ω ∈Ω.

Consider the random vector X : Ω→R such that Xi(ω) = 1{ωi=H} for each i ∈ [n]. Observe that X
is a bijection from the sample space to the set {0,1}n. In particular, X is a discrete random variable.

For any x ∈ [0,1]n, we can write N(x) = ∑n
i=11[0,1)(xi). Further, we can write the joint distribution

as

FX(x) =


1, xi > 1 for all i ∈ [n],

1
2N(x) , xi ∈ [0,1] for all i ∈ [n],
0, xi < 0 for some i ∈ [n].

We can derive the marginal distribution for i-th component as

FXi (xi) =


1, xi > 1,
1
2 , xi ∈ [0,1),
0, xi < 0.

Therefore, it follows that X is an i.i.d. vector.

1.3 Continuous random vectors

Definition 1.14 (Joint density function). For jointly continuous random vector X : Ω → Rn with joint
distribution function FX : Rn → [0,1], there exists a joint density function fX : Rn → [0,∞) such that
fX(x) = dn

dx1 ...dxn
FX(x), and

FX(x) =
∫

u16x1

du1· · ·
∫

un6xn
dun fX(u1, . . . ,un).

Remark 5. For an independent continuous random vector X : Ω→Rn, we have fX(x) = ∏n
i=1 fXi (xi) for all

x ∈Rn.

Example 1.15 (Gaussian random vectors). For a probability space (Ω,F, P), Gaussian random vector
is a continuous random vector X : Ω→Rn defined by its density function

fX(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for all x ∈Rn,

where the mean vector µ∈Rn and the positive definite covariance matrix Σ∈Rn×n. The components of
the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal
matrix and are identically distributed when Σ = σ2 I.
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1.4 Properties of the joint distribution function

Lemma 1.16 (Properties of the joint distribution function). Then the joint distribution function FX : Rn →
[0,1] satisfies the following properties.

(i) For x,y ∈Rn such that xi 6 yi for each i ∈ [n], we have FX(x)6 FX(y).

(ii) The function FX(x) is right continuous at all points x ∈Rn.

(iii) The lower limit is limxi→−∞ FX(x) = 0, and the upper limit is limxi→∞,i∈[n] FX(x) = 1.

Proof. Consider a random vector X : Ω→Rn defined on the probability space (Ω,F, P) and any x ∈Rn.

(i) We can verify that A(x) = ∩n
i=1 Ai(xi)⊆ ∩n

i=1 Ai(yi) = A(y). The result follows from the monotonicity
of probability measure.

(ii) The proof is similar to the proof for single random variable.

(iii) The event A(x) = ∅ when xi = −∞ for some i ∈ [n] and A(x) = Ω when xi = ∞ for all i ∈ [n], hence
the result follow.

Example 1.17 (Probability of rectangular events). Consider a probability space (Ω,F, P) and a random
vector X : Ω→R2. Let events B1 , {x1 < X1 6 y1} = A1(y1) \ A1(x1) ∈ F and B2 , {x2 < X2 6 y2} =
A2(y2) \ A2(x2) ∈ F. The marginal probabilities are given by

P(B1) = P(A1(y1))− P(A1(x1)) = FX1(y1)− FX1(x1), P(B2) = P(A2(y2))− P(A2(x2)) = FX2(y2)− FX2(x2).

Then the probability of the rectangular event B1 ∩ B2 = (A(y1,y2) \ A(x1,y2)) \ (A(y1, x2) \ A(x1, x2)) ∈
F is

P(B1 ∩ B2) = (FX(y1,y2)− FX(x1,y2))− (FX(y1, x2)− FX(x1, x2)).
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