Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Projection). For a vector $x \in \mathbb{R}^{n}$, we can define $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the projection of an n-length vector onto its i-th component, such that $\pi_{i}(x)=x_{i}$.

Remark 1. For a subset $A \subseteq \mathbb{R}$ and projection $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can write

$$
\pi_{i}^{-1}(A) \triangleq\left\{x \in \mathbb{R}^{n}: x_{i} \in A\right\}=\mathbb{R} \times \ldots A \cdots \times \mathbb{R}
$$

Example 1.2. Consider a function $f: \Omega \rightarrow \mathbb{R}^{n}$, then $f(\omega) \in \mathbb{R}^{n}$ and can be expressed in terms of its components $\left(f_{1}(\omega), \ldots, f_{n}(\omega)\right)$, where $f_{i}=\pi_{i} \circ f$. For this function f, we can write the inverse image of a set $B \subseteq \mathbb{R}^{n}$ as

$$
f^{-1}(B) \triangleq \cap_{i=1}^{n}\left\{\omega \in \Omega:\left(\pi_{i} \circ f\right)(\omega) \in \pi_{i}(B)\right\}=\cap_{i=1}^{n} f_{i}^{-1}\left(\pi_{i}(B)\right)
$$

Definition 1.3 (Random vectors). Consider a probability space (Ω, \mathcal{F}, P) and a finite $n \in \mathbb{N}$. A random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ is a mapping from sample space to an n-length real-valued vector, such that for $x \in \mathbb{R}^{n}$, the event

$$
A(x) \triangleq\left\{\omega \in \Omega: X_{1}(\omega) \leqslant x_{1}, \ldots, X_{n}(\omega) \leqslant x_{n}\right\}=\cap_{i=1}^{n} X_{i}^{-1}\left(-\infty, x_{i}\right] \in \mathcal{F}
$$

We say that the random vector X is \mathcal{F}-measurable and the probability of this event is denoted by

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \equiv F_{X}(x) \triangleq P(A(x))=P\left(\left\{X_{1} \leqslant x_{1}, \ldots, X_{n} \leqslant x_{n}\right\}\right)=P\left(\cap_{i=1}^{n} X_{i}^{-1}\left(-\infty, x_{i}\right]\right)
$$

The function $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$ is called the joint distribution function of a random vector X. The event space generated by the random vector X is the smallest σ-algebra generated by the collection of events $\left(A(x): x \in \mathbb{R}^{n}\right)$ and denoted by $\sigma(X) \triangleq \sigma\left(A(x): x \in \mathbb{R}^{n}\right)$.

Theorem 1.4. Consider a probability space (Ω, \mathcal{F}, P). For a finite $n \in \mathbb{N}, X: \Omega \rightarrow \mathbb{R}^{n}$ is a random vector if and only if $X_{i} \triangleq \pi_{i} \circ X: \Omega \rightarrow \mathbb{R}$ random variables for all $i \in[n]$. In particular, $\sigma(X)=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Proof. We will first show that $X: \Omega \rightarrow \mathbb{R}^{n}$ implies that $\pi_{i} \circ X$ is a random variable for any $i \in[n]$. For any $i \in[n]$ and $x_{i} \in \mathbb{R}$, we take $x=\left(\infty, \ldots, x_{i}, \ldots, \infty\right)$. This implies that $B \triangleq \pi_{i}^{-1}\left(-\infty, x_{i}\right]=\mathbb{R} \times \ldots\left(-\infty, x_{i}\right] \cdots \times$ $\mathbb{R} \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Further, defining $A_{i}\left(x_{i}\right) \triangleq X_{i}^{-1}\left(-\infty, x_{i}\right]$, we observe from the definition of random vectors that

$$
\begin{equation*}
A_{i}\left(x_{i}\right)=X^{-1} \circ \pi_{i}^{-1}\left(-\infty, x_{i}\right]=X^{-1}(B)=A(x) \in \mathcal{F} . \tag{1}
\end{equation*}
$$

We will next show that if $X_{i}: \Omega \rightarrow \mathbb{R}$ is a random variable for all $i \in[n]$, then $X \triangleq\left(X_{1}, \ldots, X_{n}\right): \Omega \rightarrow \mathbb{R}^{n}$ is a random vector. For any $x \in \mathbb{R}^{n}$, we have $A_{i}\left(x_{i}\right)=X_{i}^{-1}\left(-\infty, x_{i}\right] \in \mathcal{F}$ for all $i \in[n]$, from the definition of random variables. From the closure of event set under countable intersections, we have

$$
\begin{equation*}
A(x)=\cap_{i=1}^{n} A_{i}\left(x_{i}\right) \in \mathcal{F} . \tag{2}
\end{equation*}
$$

Definition 1.5. For a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P), the distribution of the i th random variable $X_{i} \triangleq \pi_{i} \circ X: \Omega \rightarrow \mathbb{R}$ is called the i th marginal distribution, and denoted by $F_{X_{i}}: \Omega \rightarrow[0,1]$ for all $i \in[n]$.

Corollary 1.6 (Marginal distribution). Consider a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on a probability space (Ω, \mathcal{F}, P) with the joint distribution $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$. The i-th marginal distribution and can be obtained from the joint distribution of X as

$$
F_{X_{i}}\left(x_{i}\right)=\lim _{x_{j} \rightarrow \infty, \text { for all } j \neq i} F_{X}(x)
$$

Proof. For any $i \in[n]$ and $x_{i} \in \mathbb{R}$, we have $X_{i}^{-1}\left(-\infty, x_{i}\right]=A(x)$ for $x=\left(\infty, \ldots, x_{i}, \ldots, \infty\right)$ from (1).

1.1 Independence of random variables

Definition 1.7 (Independent and identically distributed). A random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) is called independent if

$$
F_{X}(x)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right), \text { for all } x \in \mathbb{R}^{n}
$$

The random vector X is called identically distributed if each of its components have the identical marginal distribution, i.e.

$$
F_{X_{i}}=F_{X_{1}}, \text { for all } i \in[n] .
$$

Remark 2. Independence of a random vector implies that events $\left(A_{i}\left(x_{i}\right): i \in[n]\right)$ are independent for any $x \in \mathbb{R}^{n}$.

Definition 1.8. A family of collections of events $\left(\mathcal{A}_{i} \subseteq \mathcal{F}: i \in I\right)$ is called independent, if for any finite set $F \subseteq I$ and $A_{i} \in \mathcal{A}_{i}$ for all $i \in F$, we have

$$
P\left(\cap_{i \in F} A_{i}\right)=\prod_{i \in F} P\left(A_{i}\right)
$$

Remark 3. In general, if two collection of events are mutually independent, then the event space generated by them are independent. This can be proved using Dynkin's $\pi-\lambda$ Theorem.

Theorem 1.9. For an independent random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on a probability space (Ω, \mathcal{F}, P), the event spaces generated by its components $\left(\sigma\left(X_{i}\right): i \in[n]\right)$ are independent.

Proof. For an we define a family of events $\mathcal{A}_{i} \triangleq\left(X_{i}^{-1}(-\infty, x]: x \in \mathbb{R}\right)$ for each $i \in[n]$. From the definition of independence of random vectors, the families $\left(\mathcal{A}_{i} \subseteq \mathcal{F}: i \in[n]\right)$ are mutually independent. Since $\sigma\left(\mathcal{A}_{i}\right)=$ $\sigma\left(X_{i}\right)$, the result follows from the previous remark.

Definition 1.10 (Independent random vectors). To random vectors $X, Y: \Omega \rightarrow \mathbb{R}^{n}$ defined on the same probability space (Ω, \mathcal{F}, P) are independent, if the collection of events $\left(A_{X}(x): x \in \mathbb{R}^{n}\right)$ and $\left(A_{Y}(y): y \in \mathbb{R}^{n}\right)$ are independent, where $A_{X}(x) \triangleq \cap_{i=1}^{n} X_{i}^{-1}\left(-\infty, x_{i}\right]$ and $A_{Y}(y) \triangleq \cap_{i=1}^{n} Y_{i}^{-1}\left(-\infty, y_{i}\right]$.

Example 1.11 (Independent random vectors). Consider a set of vectors $X=\{(0,0,1),(1,0,0)\} \subseteq \mathbb{R}^{3}$. Consider two independent coin tosses, such that $\Omega=\{H, T\}^{2}, \mathcal{F}=2^{\Omega}$ and $P(\omega)=p^{k_{2}(\omega)}(1-p)^{2-k_{2}(\omega)}$, where $k_{2}(\omega)=\sum_{i=1}^{2} \mathbb{1}_{\left\{\omega_{i}=H\right\}}$. We define random vectors

$$
X=(0,0,1) \mathbb{1}_{\left\{\omega_{1}=H\right\}}+(1,0,0) \mathbb{1}_{\left\{\omega_{1}=T\right\}}, \quad Y=(0,0,1) \mathbb{1}_{\left\{\omega_{2}=H\right\}}+(1,0,0) \mathbb{1}_{\left\{\omega_{2}=T\right\}}
$$

We can verify that $X, Y: \Omega \rightarrow \mathbb{R}^{3}$ are mutually independent random vectors, though we can also check that X_{1}, X_{3} are dependent random variables and so are Y_{1}, Y_{3}.

1.2 Discrete random vectors

Definition 1.12 (Discrete random vectors). If a random vector $X: \Omega \rightarrow X_{1} \times \cdots \times X_{n} \subseteq \mathbb{R}^{n}$ takes countable values in \mathbb{R}^{n}, then it is called a discrete random vector. That is, the range of random vector X is countable, and the random vector is completely specified by the probability mass function

$$
P_{X}(x)=P\left(\cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}\right) \text { for all } x \in X_{1} \times \cdots \times X_{n}
$$

Remark 4. For an independent discrete random vector $X: \Omega \rightarrow \mathbb{R}^{n}$, we have $P_{X}(x)=\prod_{i=1}^{n} P_{X_{i}}\left(x_{i}\right)$ for each $x \in \mathbb{R}^{n}$.

Example 1.13 (Multiple coin tosses). For a probability space (Ω, \mathcal{F}, P), such that $\Omega=\{H, T\}^{n}$, $\mathcal{F}=$ $2^{\Omega}, P(\omega)=\frac{1}{2^{n}}$ for all $\omega \in \Omega$.

Consider the random vector $X: \Omega \rightarrow \mathbb{R}$ such that $X_{i}(\omega)=\mathbb{1}_{\left\{\omega_{i}=H\right\}}$ for each $i \in[n]$. Observe that X is a bijection from the sample space to the set $\{0,1\}^{n}$. In particular, X is a discrete random variable.

For any $x \in[0,1]^{n}$, we can write $N(x)=\sum_{i=1}^{n} \mathbb{1}_{[0,1)}\left(x_{i}\right)$. Further, we can write the joint distribution as

$$
F_{X}(x)= \begin{cases}1, & x_{i} \geqslant 1 \text { for all } i \in[n] \\ \frac{1}{2^{N(x)}}, & x_{i} \in[0,1] \text { for all } i \in[n] \\ 0, & x_{i}<0 \text { for some } i \in[n]\end{cases}
$$

We can derive the marginal distribution for i-th component as

$$
F_{X_{i}}\left(x_{i}\right)= \begin{cases}1, & x_{i} \geqslant 1 \\ \frac{1}{2}, & x_{i} \in[0,1) \\ 0, & x_{i}<0\end{cases}
$$

Therefore, it follows that X is an i.i.d. vector.

1.3 Continuous random vectors

Definition 1.14 (Joint density function). For jointly continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ with joint distribution function $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$, there exists a joint density function $f_{X}: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $f_{X}(x)=\frac{d^{n}}{d x_{1} \ldots d x_{n}} F_{X}(x)$, and

$$
F_{X}(x)=\int_{u_{1} \leqslant x_{1}} d u_{1} \cdots \int_{u_{n} \leqslant x_{n}} d u_{n} f_{X}\left(u_{1}, \ldots, u_{n}\right)
$$

Remark 5. For an independent continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$, we have $f_{X}(x)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)$ for all $x \in \mathbb{R}^{n}$.

Example 1.15 (Gaussian random vectors). For a probability space (Ω, \mathcal{F}, P), Gaussian random vector is a continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined by its density function

$$
f_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \text { for all } x \in \mathbb{R}^{n}
$$

where the mean vector $\mu \in \mathbb{R}^{n}$ and the positive definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. The components of the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal matrix and are identically distributed when $\Sigma=\sigma^{2} I$.

1.4 Properties of the joint distribution function

Lemma 1.16 (Properties of the joint distribution function). Then the joint distribution function $F_{X}: \mathbb{R}^{n} \rightarrow$ $[0,1]$ satisfies the following properties.
(i) For $x, y \in \mathbb{R}^{n}$ such that $x_{i} \leqslant y_{i}$ for each $i \in[n]$, we have $F_{X}(x) \leqslant F_{X}(y)$.
(ii) The function $F_{X}(x)$ is right continuous at all points $x \in \mathbb{R}^{n}$.
(iii) The lower limit is $\lim _{x_{i} \rightarrow-\infty} F_{X}(x)=0$, and the upper limit is $\lim _{x_{i} \rightarrow \infty, i \in[n]} F_{X}(x)=1$.

Proof. Consider a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) and any $x \in \mathbb{R}^{n}$.
(i) We can verify that $A(x)=\cap_{i=1}^{n} A_{i}\left(x_{i}\right) \subseteq \cap_{i=1}^{n} A_{i}\left(y_{i}\right)=A(y)$. The result follows from the monotonicity of probability measure.
(ii) The proof is similar to the proof for single random variable.
(iii) The event $A(x)=\varnothing$ when $x_{i}=-\infty$ for some $i \in[n]$ and $A(x)=\Omega$ when $x_{i}=\infty$ for all $i \in[n]$, hence the result follow.

Example 1.17 (Probability of rectangular events). Consider a probability space (Ω, \mathcal{F}, P) and a random vector $X: \Omega \rightarrow \mathbb{R}^{2}$. Let events $B_{1} \triangleq\left\{x_{1}<X_{1} \leqslant y_{1}\right\}=A_{1}\left(y_{1}\right) \backslash A_{1}\left(x_{1}\right) \in \mathcal{F}$ and $B_{2} \triangleq\left\{x_{2}<X_{2} \leqslant y_{2}\right\}=$ $A_{2}\left(y_{2}\right) \backslash A_{2}\left(x_{2}\right) \in \mathcal{F}$. The marginal probabilities are given by

$$
P\left(B_{1}\right)=P\left(A_{1}\left(y_{1}\right)\right)-P\left(A_{1}\left(x_{1}\right)\right)=F_{X_{1}}\left(y_{1}\right)-F_{X_{1}}\left(x_{1}\right), \quad P\left(B_{2}\right)=P\left(A_{2}\left(y_{2}\right)\right)-P\left(A_{2}\left(x_{2}\right)\right)=F_{X_{2}}\left(y_{2}\right)-F_{X_{2}}\left(x_{2}\right)
$$

Then the probability of the rectangular event $B_{1} \cap B_{2}=\left(A\left(y_{1}, y_{2}\right) \backslash A\left(x_{1}, y_{2}\right)\right) \backslash\left(A\left(y_{1}, x_{2}\right) \backslash A\left(x_{1}, x_{2}\right)\right) \in$ \mathcal{F} is

$$
P\left(B_{1} \cap B_{2}\right)=\left(F_{X}\left(y_{1}, y_{2}\right)-F_{X}\left(x_{1}, y_{2}\right)\right)-\left(F_{X}\left(y_{1}, x_{2}\right)-F_{X}\left(x_{1}, x_{2}\right)\right)
$$

