Lecture-06: Transformation of random vectors

1 Functions of random variables

Definition 1.1. Borel measurable sets on a space \mathbb{R}^{n} is denoted by $\mathcal{B}\left(\mathbb{R}^{n}\right)$ and generated by the collection $\left(\pi_{i}^{-1}(-\infty, x]: x \in \mathbb{R}, i \in[n]\right)$. A function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called Borel measurable function, if $g^{-1}\left(B_{m}\right) \in$ $\mathcal{B}\left(\mathbb{R}^{n}\right)$ for any $B_{m} \in \mathcal{B}\left(\mathbb{R}^{m}\right)$.

Proposition 1.2. Consider a random variable $X: \Omega \rightarrow \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P). Suppose g : $\mathbb{R} \rightarrow \mathbb{R}$ is function such that $g^{-1}(-\infty, x] \in \mathcal{B}(\mathbb{R})$, then $g(X)$ is a random variable.

Proof. We represent $g(X)$ by a map $Y: \Omega \rightarrow \mathbb{R}$ such that $Y(\omega) \triangleq(g \circ X)(\omega)$ for all outcomes $\omega \in \Omega$. We further check that for any half open set $B_{x}=(-\infty, x]$, we have $Y^{-1}\left(B_{x}\right)=\left(X^{-1} \circ g^{-1}\right)\left(B_{x}\right)$. Since $g^{-1}\left(B_{x}\right) \in$ $\mathcal{B}(\mathbb{R})$, it follows that $Y^{-1}\left(B_{x}\right) \in \mathcal{F}$ by the definition of random variables.

Example 1.3 (Monotone function of random variables). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function such that $g^{-1}(-\infty, x] \in \mathcal{B}(\mathbb{R})$ for all $x \in \mathbb{R}$. Consider a random variable $X: \Omega \rightarrow \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P), then $Y \triangleq g(X)$ is a random variable with distribution function

$$
F_{Y}(y)=P\{g(X) \leqslant y\}=P\left\{X \leqslant g^{-1}(y)\right\}=F_{X}\left(g^{-1}(y)\right)
$$

Here, $g^{-1}(y)$ is the functional inverse, and not inverse image as we have been seeing typically. We can think $g^{-1}(y)=g^{-1}\{y\}$, though this inverse image has at most a single element since g is monotonically increasing.

Example 1.4. Consider a positive random variable $X: \Omega \rightarrow \mathbb{R}_{+}$defined on a probability space (Ω, \mathcal{F}, P). Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be such that $g(x)=e^{-\theta x}$ for all $x \in \mathbb{R}_{+}$and some $\theta>0$. Then, g is monotonically decreasing in X and $x=g^{-1}(y)=-\frac{1}{\theta} \ln y$. This implies that $g^{-1}(-\infty, y]=\left[-\frac{1}{\theta} \ln y, \infty\right) \in \mathcal{B}\left(\mathbb{R}_{+}\right)$for all $y \in \mathbb{R}_{+}$. Thus g is a measurable function, and $Y=g(X)$ is a random variable.

Proposition 1.5 (Independence of function of random variables). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ be functions such that $g^{-1}(-\infty, x]$ and $h^{-1}(-\infty, x]$ are Borel sets for all $x \in \mathbb{R}$. Consider independent random variables X and Y defined on the probability space (Ω, \mathcal{F}, P), then $g(X)$ and $h(Y)$ are independent random variables.

Proof. For any $u, v \in \mathbb{R}$, we can define inverse images $A \triangleq g^{-1}(-\infty, u]$ and $B \triangleq g^{-1}(\infty, v]$. Since g, h are Borel measurable, we have $A, B \in \mathcal{B}(\mathbb{R})$. We can write the following outcome set equality for the joint event

$$
\{g(X) \leqslant u\} \cap\{h(Y) \leqslant v\}=\left\{X \in g^{-1}(-\infty, u]\right\} \cap\left\{Y \in h^{-1}(-\infty, v]\right\}=X^{-1}(A) \cap Y^{-1}(B) \in \mathcal{F}
$$

Since X and Y are independent random variables, it follows that $X^{-1}(A)$ and $Y^{-1}(B)$ are independent events, and the result follows.

2 Function of random vectors

Proposition 2.1. Consider a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P), and a Borel measurable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $B(y) \triangleq \cap_{j=1}^{m}\left\{x \in \mathbb{R}^{n}: g_{j}(x) \leqslant y_{j}\right\} \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ for all $y \in \mathbb{R}^{m}$. Then, $g(X): \Omega \rightarrow \mathbb{R}^{m}$ is a random vector. The joint distribution function $F_{Y}: \mathbb{R}^{m} \rightarrow[0,1]$ for the vector Y is given by

$$
F_{Y}(y)=P\left(X^{-1}(B(y))\right), \quad \text { for all } y \in \mathbb{R}^{m} .
$$

Example 2.2 (Sum of random variables). For a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on a probability space (Ω, \mathcal{F}, P). Define an addition function $+: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $+(x)=\sum_{i=1}^{n} x_{i}$ for any $x \in \mathbb{R}^{n}$. We can verify that + is a Borel measurable function and hence $Y=+(X)=\sum_{i=1}^{n} X_{i}$ is a random variable. When $n=2$ and X is a continuous random vector with density $f_{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$, we can write

$$
F_{Y}(y)=P(\{Y \leqslant y\})=P\left(\left\{X_{1}+X_{2} \leqslant y\right\}\right)=\int_{x_{1} \in \mathbb{R}} \int_{x_{2} \leqslant y-x_{1}} f_{X}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

By applying a change of variable $\left(x_{1}, t\right)=\left(x_{1}, x_{1}+x_{2}\right)$ and changing the order of integration, we see that

$$
F_{Y}(y)=\int_{t \leqslant y} d t \int_{x_{1} \in \mathbb{R}} d x_{1} f_{X}\left(x_{1}, t-x_{1}\right)
$$

When Y is a continuous random vector, we can write

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\int_{x \in \mathbb{R}} f_{X}(x, y-x) d x
$$

When $X: \Omega \rightarrow \mathbb{R}^{2}$ is an independent vector, then $f_{X}(x)=f_{X_{1}}\left(x_{1}\right) f_{X}\left(x_{2}\right)$ for all $x \in \mathbb{R}^{2}$. Therefore, the density of the sum $X_{1}+X_{2}$ is given by

$$
f_{Y}(y)=\int_{x \in \mathbb{R}} d x f_{X_{1}}(x) f_{X_{2}}(y-x)=\left(f_{X_{1}} * f_{X_{2}}\right)(y)
$$

where $*: \mathbb{R}^{\mathbb{R}} \times \mathbb{R}^{\mathbb{R}} \rightarrow \mathbb{R}^{\mathbb{R}}$ is the convolution operator.

Theorem 2.3. For a continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) with density $f_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$and an injective Borel measurable function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, such that $Y=g(X)$ is a continuous random vector. Then the density of random vector Y is given by

$$
f_{Y}(y)=f_{X}(x)|J(y)|
$$

where $x=g^{-1}(y)$ and $J(y)=\left(J_{i j}(y) \triangleq \frac{\partial y_{j}}{\partial x_{i}}: i, j \in[m]\right)$ is the Jacobian matrix.
Proof. For the random vector Y, we are interested in finding the probability of the event

$$
d B_{Y}(y) \triangleq \cap_{j=1}^{m} Y_{j}^{-1}\left(y_{j}, y_{j}+d y_{j}\right], \quad y \in \mathbb{R}^{m}
$$

For continuous random vector Y with the joint density $f_{Y}(y)$, we can write for infinitesimally small $d y_{1}, d y_{2}, \ldots, d y_{m}$

$$
P\left(d B_{Y}(y)\right) \approx f_{Y}(y) d y=f_{Y}\left(y_{1}, \ldots, y_{m}\right) d y_{1} \ldots d y_{m}
$$

Since $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is injective map, we have the inverse map $g^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\left(g^{-1} \circ g\right)(x)=x$. We write $x=g^{-1}(y)$, to obtain

$$
P\left(d B_{Y}(y)\right)=P\left(\cap_{j=1}^{m}\left\{g_{j}(X) \in\left(y_{j}, y_{j}+d y_{j}\right]\right\}\right)=P\left(\cap_{j=1}^{m}\left\{X \in\left(x_{j}, x_{j}+d x_{j}\right]\right\}\right)=P\left(d B_{X}(x)\right)
$$

where the infinitesimal volume around $x=g^{-1}(y)$ is given in terms of the determinant of the Jacobian matrix $J(y)$, such that

$$
d x_{1} \ldots d x_{m}=|J(y)| d y_{1} \ldots d y_{m}
$$

Example 2.4 (Sum of random variables). Suppose that $X: \Omega \rightarrow \mathbb{R}^{2}$ is a continuous random vector and $Y_{1}=X_{1}+X_{2}$. Let us compute $f_{Y_{1}}\left(y_{!}\right)$using the above theorem. Let us define a random vector $Y: \Omega \rightarrow \mathbb{R}^{2}$ such that $Y=\left(X_{1}+X_{2}, X_{2}\right)$ so that $|J(y)|=1$. This implies, $f_{Y}(y)=f_{X}(x)$. Thus, we may compute the marginal density of Y_{1} as,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X}(x) \mathbb{1}_{\left\{x_{2}=y_{2}, x_{1}+x_{2}=y_{1}\right\}} d y_{2}=\int_{-\infty}^{\infty} f_{X}\left(y_{1}-y_{2}, y_{2}\right) d y_{2}
$$

If X is an independent random vector, then

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}}\left(y_{1}-y_{2}\right) f_{X_{2}}\left(y_{2}\right) d y_{2}=\left(f_{X_{1}} * f_{X_{2}}\right)\left(y_{1}\right)
$$

where $*$ represents convolution.

