Lecture-06: Transformation of random vectors

1 Functions of random variables

Definition 1.1. Borel measurable sets on a space \mathbb{R}^n is denoted by $\mathfrak{B}(\mathbb{R}^n)$ and generated by the collection $(\pi_i^{-1}(-\infty,x]:x\in\mathbb{R},i\in[n])$. A function $g:\mathbb{R}^n\to\mathbb{R}^m$ is called **Borel measurable** function, if $g^{-1}(B_m)\in\mathfrak{B}(\mathbb{R}^n)$ for any $B_m\in\mathfrak{B}(\mathbb{R}^m)$.

Proposition 1.2. Consider a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) . Suppose $g : \mathbb{R} \to \mathbb{R}$ is function such that $g^{-1}(-\infty, x] \in \mathcal{B}(\mathbb{R})$, then g(X) is a random variable.

Proof. We represent g(X) by a map $Y: \Omega \to \mathbb{R}$ such that $Y(\omega) \triangleq (g \circ X)(\omega)$ for all outcomes $\omega \in \Omega$. We further check that for any half open set $B_x = (-\infty, x]$, we have $Y^{-1}(B_x) = (X^{-1} \circ g^{-1})(B_x)$. Since $g^{-1}(B_x) \in \mathcal{B}(\mathbb{R})$, it follows that $Y^{-1}(B_x) \in \mathcal{F}$ by the definition of random variables.

Example 1.3 (Monotone function of random variables). Let $g : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function such that $g^{-1}(-\infty,x] \in \mathcal{B}(\mathbb{R})$ for all $x \in \mathbb{R}$. Consider a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω,\mathcal{F},P) , then $Y \triangleq g(X)$ is a random variable with distribution function

$$F_Y(y) = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = F_X(g^{-1}(y)).$$

Here, $g^{-1}(y)$ is the functional inverse, and not inverse image as we have been seeing typically. We can think $g^{-1}(y) = g^{-1}\{y\}$, though this inverse image has at most a single element since g is monotonically increasing.

Example 1.4. Consider a positive random variable $X:\Omega\to\mathbb{R}_+$ defined on a probability space (Ω,\mathcal{F},P) . Let $g:\mathbb{R}_+\to\mathbb{R}_+$ be such that $g(x)=e^{-\theta x}$ for all $x\in\mathbb{R}_+$ and some $\theta>0$. Then, g is monotonically decreasing in X and $x=g^{-1}(y)=-\frac{1}{\theta}\ln y$. This implies that $g^{-1}(-\infty,y]=[-\frac{1}{\theta}\ln y,\infty)\in\mathcal{B}(\mathbb{R}_+)$ for all $y\in\mathbb{R}_+$. Thus g is a measurable function, and Y=g(X) is a random variable.

Proposition 1.5 (Independence of function of random variables). Let $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ be functions such that $g^{-1}(-\infty,x]$ and $h^{-1}(-\infty,x]$ are Borel sets for all $x \in \mathbb{R}$. Consider independent random variables X and Y defined on the probability space (Ω, \mathcal{F}, P) , then g(X) and h(Y) are independent random variables.

Proof. For any $u,v \in \mathbb{R}$, we can define inverse images $A \triangleq g^{-1}(-\infty,u]$ and $B \triangleq g^{-1}(\infty,v]$. Since g,h are Borel measurable, we have $A,B \in \mathcal{B}(\mathbb{R})$. We can write the following outcome set equality for the joint event

$$\left\{g(X)\leqslant u\right\}\cap\left\{h(Y)\leqslant v\right\}=\left\{X\in g^{-1}(-\infty,u]\right\}\cap\left\{Y\in h^{-1}(-\infty,v]\right\}=X^{-1}(A)\cap Y^{-1}(B)\in\mathcal{F}.$$

Since X and Y are independent random variables, it follows that $X^{-1}(A)$ and $Y^{-1}(B)$ are independent events, and the result follows.

2 Function of random vectors

Proposition 2.1. Consider a random vector $X : \Omega \to \mathbb{R}^n$ defined on the probability space (Ω, \mathcal{F}, P) , and a Borel measurable function $g : \mathbb{R}^n \to \mathbb{R}^m$ such that $B(y) \triangleq \bigcap_{j=1}^m \left\{ x \in \mathbb{R}^n : g_j(x) \leqslant y_j \right\} \in \mathcal{B}(\mathbb{R}^n)$ for all $y \in \mathbb{R}^m$. Then, $g(X) : \Omega \to \mathbb{R}^m$ is a random vector. The joint distribution function $F_Y : \mathbb{R}^m \to [0,1]$ for the vector Y is given by

$$F_Y(y) = P(X^{-1}(B(y))), \text{ for all } y \in \mathbb{R}^m.$$

Example 2.2 (Sum of random variables). For a random vector $X: \Omega \to \mathbb{R}^n$ defined on a probability space (Ω, \mathcal{F}, P) . Define an addition function $+: \mathbb{R}^n \to \mathbb{R}$ such that $+(x) = \sum_{i=1}^n x_i$ for any $x \in \mathbb{R}^n$. We can verify that + is a Borel measurable function and hence $Y = +(X) = \sum_{i=1}^n X_i$ is a random variable. When n = 2 and X is a continuous random vector with density $f_X : \mathbb{R}^2 \to \mathbb{R}_+$, we can write

$$F_Y(y) = P(\{Y \leqslant y\}) = P(\{X_1 + X_2 \leqslant y\}) = \int_{x_1 \in \mathbb{R}} \int_{x_2 \leqslant y - x_1} f_X(x_1, x_2) dx_1 dx_2.$$

By applying a change of variable $(x_1,t) = (x_1,x_1 + x_2)$ and changing the order of integration, we see that

$$F_Y(y) = \int_{t \leqslant y} dt \int_{x_1 \in \mathbb{R}} dx_1 f_X(x_1, t - x_1).$$

When Y is a continuous random vector, we can write

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \int_{x \in \mathbb{R}} f_X(x, y - x) dx.$$

When $X : \Omega \to \mathbb{R}^2$ is an independent vector, then $f_X(x) = f_{X_1}(x_1) f_X(x_2)$ for all $x \in \mathbb{R}^2$. Therefore, the density of the sum $X_1 + X_2$ is given by

$$f_Y(y) = \int_{x \in \mathbb{R}} dx f_{X_1}(x) f_{X_2}(y - x) = (f_{X_1} * f_{X_2})(y),$$

where $*:\mathbb{R}^\mathbb{R}\times\mathbb{R}^\mathbb{R}\to\mathbb{R}^\mathbb{R}$ is the convolution operator.

Theorem 2.3. For a continuous random vector $X : \Omega \to \mathbb{R}^n$ defined on the probability space (Ω, \mathcal{F}, P) with density $f_X : \mathbb{R}^n \to \mathbb{R}_+$ and an injective Borel measurable function $g : \mathbb{R}^m \to \mathbb{R}^m$, such that Y = g(X) is a continuous random vector. Then the density of random vector Y is given by

$$f_{Y}(y) = f_{X}(x) |J(y)|,$$

where $x = g^{-1}(y)$ and $J(y) = (J_{ij}(y) \triangleq \frac{\partial y_j}{\partial x_i} : i, j \in [m])$ is the Jacobian matrix.

Proof. For the random vector *Y*, we are interested in finding the probability of the event

$$dB_Y(y) \triangleq \bigcap_{j=1}^m Y_j^{-1}(y_j, y_j + dy_j), \quad y \in \mathbb{R}^m.$$

For continuous random vector Y with the joint density $f_Y(y)$, we can write for infinitesimally small dy_1, dy_2, \dots, dy_m

$$P(dB_Y(y)) \approx f_Y(y)dy = f_Y(y_1,...,y_m)dy_1...dy_m.$$

Since $g: \mathbb{R}^m \to \mathbb{R}^m$ is injective map, we have the inverse map $g^{-1}: \mathbb{R}^m \to \mathbb{R}^m$ such that $(g^{-1} \circ g)(x) = x$. We write $x = g^{-1}(y)$, to obtain

$$P(dB_Y(y)) = P(\bigcap_{j=1}^m \{g_j(X) \in (y_j, y_j + dy_j]\}) = P(\bigcap_{j=1}^m \{X \in (x_j, x_j + dx_j]\}) = P(dB_X(x)),$$

where the infinitesimal volume around $x = g^{-1}(y)$ is given in terms of the determinant of the Jacobian matrix J(y), such that

$$dx_1...dx_m = |J(y)|dy_1...dy_m.$$

Example 2.4 (Sum of random variables). Suppose that $X:\Omega\to\mathbb{R}^2$ is a continuous random vector and $Y_1=X_1+X_2$. Let us compute $f_{Y_1}(y_!)$ using the above theorem. Let us define a random vector $Y:\Omega\to\mathbb{R}^2$ such that $Y=(X_1+X_2,X_2)$ so that |J(y)|=1. This implies, $f_Y(y)=f_X(x)$. Thus, we may compute the marginal density of Y_1 as,

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_X(x) \mathbb{1}_{\{x_2 = y_2, x_1 + x_2 = y_1\}} dy_2 = \int_{-\infty}^{\infty} f_X(y_1 - y_2, y_2) dy_2.$$

If *X* is an independent random vector, then

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{X_1}(y_1 - y_2) f_{X_2}(y_2) dy_2 = (f_{X_1} * f_{X_2})(y_1),$$

where * represents convolution.