
Lecture-08: Moments

1 Moments

Example 1.1 (Absolute value function). For the function |·| : R→R+, we can compute the inverse of
half open sets (−∞, x] for any x ∈R, as

g−1(−∞, x] =

{
∅, x < 0,
[−x, x], x > 0.

Since g−1(−∞, x] ∈ B(R), it follows that |·| : R→R+ is a Borel measurable function.

Lemma 1.2. If E |X| is finite, then EX exists and is finite.

Proof. The function |·| : R→R is a Borel measurable function and hence |X| is a random variable. Further
|X| > 0, and hence the expectation E |X| always exists. If E |X| is finite, it means EX+ and EX− are both
finite, and hence EX = EX+ −EX− is finite as well.

Corollary 1.3. Let g : R→R be a Borel measurable function. If E |g(X)| is finite, then Eg(X) exists and is finite.

Exercise 1.4 (Polynomial function). For any k∈N, we define functions gk : R→R such that gk : x 7→ xk.
Show that gk is Borel measurable.

Definition 1.5 (Moments). Let X : Ω→R be a random variable defined on the probability space (Ω,F, P).
We define the kth moment of the random variable X as mk , Egk(X) = EXk. First moment EX is called the
mean of the random variable.

Remark 1. If E |X|k is finite, then mk exists and is finite.

Example 1.6 (Moments). If |X| 6 1, then |X|k 6 1 almost surely. Therefore, by the monotonicity of
expectations E |X|k 6 1, and the moments mk exist and are finite for all k ∈N.

Lemma 1.7. If mN is finite for some N ∈N, then mk is finite for all k ∈ [N].

Proof. For any random variable X : Ω→R and k ∈ [N], we can write

|X|k = |X|k1{|X|k61
} + |X|k1{|X|k>1

} 6 1{|X|k61
} + |X|N 1{|X|k>1

} 6 1 + |X|N .

The result follows from the monotonicity of expectations.
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2 Lp spaces

Remark 2. The set of random variables is a vector space.

Definition 2.1. For a probability space (Ω,F, P), and p > 1, we define the set of random variables with finite
absolute pth moment as the vector space

Lp ,
{

X : (E |X|p)1/p < ∞
}

.

Example 2.2. The L1 space consists of random variables with bounded absolute mean. The L2 space
consists of random variables with bounded second moment.

Remark 3. For any real numbers 1 6 p 6 q, we have Lq ⊆ Lp.

3 Moment generating functions

Suppose that X : Ω→R is a continuous random variable on the probability space (Ω,F, P) with distribution
function FX : R→ [0,1].

Example 3.1. A function gθ : R→R defined by gθ(x), eθx is Borel measurable for all θ ∈R. Therefore,
gθ(X) is a positive random variable on this probability space. We can show that hθ : R→ C defined by
hθ(x), ejθx = cos(θx) + jsin(θx) is also Borel measurable for all θ ∈R, where j =

√
−1. Thus, hθ(X) is

a complex valued random variable on this probability space.

Definition 3.2 (Moment generating function). For a random variable X : Ω→R defined on the probability
space (Ω,F, P), the moment generating function MX : R→ R is defined by MX(θ) = EeθX for all θ ∈ R

where MX(θ) is finite.

Definition 3.3 (Characteristic function). For a random variable X : Ω→R defined on the probability space
(Ω,F, P), the characteristic function ΦX : R→ C is defined by ΦX(θ) = EejθX for all θ ∈R.

Theorem 3.4. Two random variables have the same probability distribution iff they have the same characteristic
function.

Proof. It is easy to see the necessity and the sufficiency is difficult.

Lemma 3.5. If E[Xk] exists and is finite for an integer k ∈N, then the derivatives of ΦX up to order k exist and are
continuous, and Φ(k)

X (0) = jkE[Xk].

Definition 3.6. For a non-negative integer-valued random variable X it is often more convenient to work
with the z-transform of the PMF, defined by ΨX(z) = EzX = ∑k>0 zk pX(k), for real or complex z with |z|6 1.

Theorem 3.7. Two non-negative integer-valued random variables have the same probability distribution iff their
z-transforms are equal. If E[Xk] is finite it can be found from the derivatives of ΨX up to the kth order at z = 1,
Ψ(k)

X (1) = E[X(X− 1) . . . (X− k + 1)].

Proof. The necessity is clear. For sufficiency, we see that Ψ(k)
X (0) = k!pX(k). Further, interchanging the

derivative and the summation (by dominated convergence theorem), we get the second result.

4 Central Moments
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Exercise 4.1 (Polynomials). For any k ∈N, we define functions hk : R→R such that hk : x 7→ (x−m1)
k.

Show that hk is Borel measurable.

Definition 4.2 (Central moments). Let X : Ω→ R be a random variable defined on the probability space
(Ω,F, P) with finite first moment m1. We define the kth central moment of the random variable X as
σk , Ehk(X) = E(X − m1)

k. The second central moment σ2 = E(X − m1)
2 is called the variance of the

random variable and denoted by σ2.

Lemma 4.3. The first central moment σ1 = E(X − m1) = 0 and the variance σ2 = E(X − m1)
2 for a random

variable X is always non-negative, with equality when X is a constant. That is, m2 > m2
1 with equality when X is a

constant.

Proof. Recall that h1, h2 are Boreal measurable functions, and hence h1(X) = X−m1 and h2(X) = (X−m1)
2

are random variables. From the linearity of expectations, it follows that σ1 = Eh1(X) = EX−m1 = 0. Since
(X−m1)

2 > 0 almost surely, it follows from the monotonicity of expectation that 0 6 E(X−m1)
2. From the

linearity of expectation and expansion of (X−m1)
2, we get σ2 = EX2 − 2m1EX + m2

1 = m2 −m2
1 > 0.

Remark 4. If second moment is finite, then the first moment is finite. That is, L2 ⊆ L1.

5 Inequalities

Theorem 5.1 (Markov’s inequality). Let X : Ω → R be a random variable defined on the probability space
(Ω,F, P). Then, for any monotonically non-decreasing function f : R→R+, we have

P{X > ε}6 E[ f (X)]

f (ε)
.

Proof. We can verify that any monotonically increasing function f : R→ R+ is Borel measurable. Hence,
f (X) is a random variable for any random variable X. Therefore,

f (X) = f (X)1{X>ε} + f (X)1{X<ε} > f (ε)1{X>ε}.

The result follows from the monotonicity of expectations.

Corollary 5.2 (Markov). Let X be a non-negative random variable, then

P{X > ε}6 EX
ε

, for all ε > 0.

Corollary 5.3 (Chebychev). Let X be a random variable with finite mean µ and variance σ2, then

P{|X− µ| > ε}6 Var X
ε2 , for all ε > 0.

Proof. Apply the Markov’s inequality for random variable Y = |X− µ|> 0 and increasing function f (x) =
x2 for x > 0.

Corollary 5.4 (Chernoff). Let X be a random variable with finite E[eθX ] for some θ > 0, then

P{X > ε}6 e−θεE[eθX ], for all ε > 0.

Proof. Apply the Markov’s inequality for random variable X and increasing function f (x) = eθx > 0 for
θ > 0.
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