Lecture-08: Moments

1 Moments

Example 1.1 (Absolute value function). For the function $|\cdot| : \mathbb{R} \to \mathbb{R}_+$, we can compute the inverse of half open sets $(-\infty, x]$ for any $x \in \mathbb{R}$, as

$$g^{-1}(-\infty,x] = \begin{cases} \emptyset, & x < 0, \\ [-x,x], & x \ge 0. \end{cases}$$

Since $g^{-1}(-\infty, x] \in \mathcal{B}(R)$, it follows that $|\cdot| : \mathbb{R} \to \mathbb{R}_+$ is a Borel measurable function.

Lemma 1.2. *If* $\mathbb{E} |X|$ *is finite, then* $\mathbb{E} X$ *exists and is finite.*

Proof. The function $|\cdot| : \mathbb{R} \to \mathbb{R}$ is a Borel measurable function and hence |X| is a random variable. Further $|X| \ge 0$, and hence the expectation $\mathbb{E}|X|$ always exists. If $\mathbb{E}|X|$ is finite, it means $\mathbb{E}X_+$ and $\mathbb{E}X_-$ are both finite, and hence $\mathbb{E}X = \mathbb{E}X_+ - \mathbb{E}X_-$ is finite as well.

Corollary 1.3. Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. If $\mathbb{E} |g(X)|$ is finite, then $\mathbb{E}g(X)$ exists and is finite.

Exercise 1.4 (Polynomial function). For any $k \in \mathbb{N}$, we define functions $g_k : \mathbb{R} \to \mathbb{R}$ such that $g_k : x \mapsto x^k$. Show that g_k is Borel measurable.

Definition 1.5 (Moments). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) . We define the *k*th **moment** of the random variable *X* as $m_k \triangleq \mathbb{E}g_k(X) = \mathbb{E}X^k$. First moment $\mathbb{E}X$ is called the **mean** of the random variable.

Remark 1. If $\mathbb{E} |X|^k$ is finite, then m_k exists and is finite.

Example 1.6 (Moments). If $|X| \leq 1$, then $|X|^k \leq 1$ almost surely. Therefore, by the monotonicity of expectations $\mathbb{E} |X|^k \leq 1$, and the moments m_k exist and are finite for all $k \in \mathbb{N}$.

Lemma 1.7. If m_N is finite for some $N \in \mathbb{N}$, then m_k is finite for all $k \in [N]$.

Proof. For any random variable $X : \Omega \to \mathbb{R}$ and $k \in [N]$, we can write

$$|X|^{k} = |X|^{k} \mathbb{1}_{\left\{|X|^{k} \leq 1\right\}} + |X|^{k} \mathbb{1}_{\left\{|X|^{k} > 1\right\}} \leq \mathbb{1}_{\left\{|X|^{k} \leq 1\right\}} + |X|^{N} \mathbb{1}_{\left\{|X|^{k} > 1\right\}} \leq 1 + |X|^{N}.$$

The result follows from the monotonicity of expectations.

2 L^p spaces

Remark 2. The set of random variables is a vector space.

Definition 2.1. For a probability space (Ω, \mathcal{F}, P) , and $p \ge 1$, we define the set of random variables with finite absolute *p*th moment as the vector space

$$L^{p} \triangleq \left\{ X : (\mathbb{E} |X|^{p})^{1/p} < \infty \right\}.$$

Example 2.2. The L^1 space consists of random variables with bounded absolute mean. The L^2 space consists of random variables with bounded second moment.

Remark 3. For any real numbers $1 \le p \le q$, we have $L^q \subseteq L^p$.

3 Moment generating functions

Suppose that $X : \Omega \to \mathbb{R}$ is a continuous random variable on the probability space (Ω, \mathcal{F}, P) with distribution function $F_X : \mathbb{R} \to [0, 1]$.

Example 3.1. A function $g_{\theta} : \mathbb{R} \to \mathbb{R}$ defined by $g_{\theta}(x) \triangleq e^{\theta x}$ is Borel measurable for all $\theta \in \mathbb{R}$. Therefore, $g_{\theta}(X)$ is a positive random variable on this probability space. We can show that $h_{\theta} : \mathbb{R} \to \mathbb{C}$ defined by $h_{\theta}(x) \triangleq e^{j\theta x} = \cos(\theta x) + j\sin(\theta x)$ is also Borel measurable for all $\theta \in \mathbb{R}$, where $j = \sqrt{-1}$. Thus, $h_{\theta}(X)$ is a complex valued random variable on this probability space.

Definition 3.2 (Moment generating function). For a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) , the moment generating function $M_X : \mathbb{R} \to \mathbb{R}$ is defined by $M_X(\theta) = \mathbb{E}e^{\theta X}$ for all $\theta \in \mathbb{R}$ where $M_X(\theta)$ is finite.

Definition 3.3 (Characteristic function). For a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) , the **characteristic function** $\Phi_X : \mathbb{R} \to \mathbb{C}$ is defined by $\Phi_X(\theta) = \mathbb{E}e^{j\theta X}$ for all $\theta \in \mathbb{R}$.

Theorem 3.4. Two random variables have the same probability distribution iff they have the same characteristic function.

Proof. It is easy to see the necessity and the sufficiency is difficult.

Lemma 3.5. If $\mathbb{E}[X^k]$ exists and is finite for an integer $k \in \mathbb{N}$, then the derivatives of Φ_X up to order k exist and are continuous, and $\Phi_X^{(k)}(0) = j^k \mathbb{E}[X^k]$.

Definition 3.6. For a non-negative integer-valued random variable *X* it is often more convenient to work with the *z*-transform of the PMF, defined by $\Psi_X(z) = \mathbb{E}z^X = \sum_{k \ge 0} z^k p_X(k)$, for real or complex *z* with $|z| \le 1$.

Theorem 3.7. Two non-negative integer-valued random variables have the same probability distribution iff their *z*-transforms are equal. If $\mathbb{E}[X^k]$ is finite it can be found from the derivatives of Ψ_X up to the kth order at z = 1, $\Psi_X^{(k)}(1) = \mathbb{E}[X(X-1)...(X-k+1)].$

Proof. The necessity is clear. For sufficiency, we see that $\Psi_X^{(k)}(0) = k! p_X(k)$. Further, interchanging the derivative and the summation (by dominated convergence theorem), we get the second result.

4 Central Moments

Exercise 4.1 (Polynomials). For any $k \in \mathbb{N}$, we define functions $h_k : \mathbb{R} \to \mathbb{R}$ such that $h_k : x \mapsto (x - m_1)^k$. Show that h_k is Borel measurable.

Definition 4.2 (Central moments). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) with finite first moment m_1 . We define the *k*th **central moment** of the random variable *X* as $\sigma_k \triangleq \mathbb{E}h_k(X) = \mathbb{E}(X - m_1)^k$. The second central moment $\sigma_2 = \mathbb{E}(X - m_1)^2$ is called the **variance** of the random variable and denoted by σ^2 .

Lemma 4.3. The first central moment $\sigma_1 = \mathbb{E}(X - m_1) = 0$ and the variance $\sigma^2 = \mathbb{E}(X - m_1)^2$ for a random variable X is always non-negative, with equality when X is a constant. That is, $m_2 \ge m_1^2$ with equality when X is a constant.

Proof. Recall that h_1, h_2 are Boreal measurable functions, and hence $h_1(X) = X - m_1$ and $h_2(X) = (X - m_1)^2$ are random variables. From the linearity of expectations, it follows that $\sigma_1 = \mathbb{E}h_1(X) = \mathbb{E}X - m_1 = 0$. Since $(X - m_1)^2 \ge 0$ almost surely, it follows from the monotonicity of expectation that $0 \le \mathbb{E}(X - m_1)^2$. From the linearity of expectation and expansion of $(X - m_1)^2$, we get $\sigma^2 = \mathbb{E}X^2 - 2m_1\mathbb{E}X + m_1^2 = m_2 - m_1^2 \ge 0$. \Box

Remark 4. If second moment is finite, then the first moment is finite. That is, $L^2 \subseteq L^1$.

5 Inequalities

Theorem 5.1 (Markov's inequality). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) . Then, for any monotonically non-decreasing function $f : \mathbb{R} \to \mathbb{R}_+$, we have

$$P\{X \ge \epsilon\} \leqslant \frac{\mathbb{E}[f(X)]}{f(\epsilon)}.$$

Proof. We can verify that any monotonically increasing function $f : \mathbb{R} \to \mathbb{R}_+$ is Borel measurable. Hence, f(X) is a random variable for any random variable X. Therefore,

$$f(X) = f(X)\mathbb{1}_{\{X \ge \epsilon\}} + f(X)\mathbb{1}_{\{X < \epsilon\}} \ge f(\epsilon)\mathbb{1}_{\{X \ge \epsilon\}}.$$

The result follows from the monotonicity of expectations.

Corollary 5.2 (Markov). Let X be a non-negative random variable, then

$$P\{X > \epsilon\} \leqslant \frac{\mathbb{E}X}{\epsilon}$$
, for all $\epsilon > 0$.

Corollary 5.3 (Chebychev). Let X be a random variable with finite mean μ and variance σ^2 , then

$$P\{|X - \mu| > \epsilon\} \leq \frac{\operatorname{Var} X}{\epsilon^2}$$
, for all $\epsilon > 0$.

Proof. Apply the Markov's inequality for random variable $Y = |X - \mu| \ge 0$ and increasing function $f(x) = x^2$ for $x \ge 0$.

Corollary 5.4 (Chernoff). Let X be a random variable with finite $\mathbb{E}[e^{\theta X}]$ for some $\theta > 0$, then

$$P\{X > \epsilon\} \leq e^{-\theta\epsilon} \mathbb{E}[e^{\theta X}], \text{ for all } \epsilon > 0.$$

Proof. Apply the Markov's inequality for random variable *X* and increasing function $f(x) = e^{\theta x} > 0$ for $\theta > 0$.