
Lecture-09: Correlation

1 Correlation

Exercise 1.1. Show that the function g : R2→R defined by g : (x,y) 7→ xy is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X,Y defined on the same probability space, the cor-
relation between these two random variables is defined as E[XY]. If E[XY] = E[X]E[Y], then the random
variables X,Y are called uncorrelated.

Lemma 1.3. If X,Y are independent random variables, then they are uncorrelated.

Proof. It suffices to show for X,Y simple and independent random variables. We can write X = ∑x∈X x1Ax
and Y = ∑y∈Y y1By . Therefore,

E[XY] = ∑
(x,y)∈X×Y

xyP
{

Ax ∩ By
}
= ∑

x∈X
xP(Ax) ∑

y∈Y
yP(By) = E[X]E[Y].

Proof. If X,Y are independent random variables, then the joint distribution FX,Y(x,y) = FX(x)FY(y) for all
(x,y) ∈R2. Therefore,

E[XY] =
∫
(x,y)∈R2

xydFX,Y(x,y) =
∫

x∈R
xdFX(x)

∫
y∈R

ydFY(y) = E[X]E[Y].

Example 1.4 (Uncorrelated dependent random variables). Let X : Ω→ R be a continuous random
variable with even density function fX : R → R+, and g : R → R be another even function that is
increasing for y ∈R+. Then g is Borel measurable function and Y = g(X) is a random variable. Further,
we can verify that X,Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x,y such that x > xy = g−1(y) and FX(x) < 1.
Then, we can write the set By = {Y 6 y} = {g(X)6 y} =

{
−xy 6 X 6 xy

}
. Hence, we can write the

joint distribution at (x,y) as

FX,Y(x,y) = P{X 6 x,Y 6 y} = P(Ax ∩ By) = P(By) = FY(y) 6= FX(x)FY(y).

Since X has even density function, we have fX(x) = fX(−x) for all x ∈R. Therefore, we have

EXg(X)1{X<0} =
∫

x<0
xg(x) fX(x)dx =

∫
u>0

(−u)g(−u) fX(u)du = −EXg(−X)1{X>0}.

Further, since the function g is even, we have g(X) = g(−X). Therefore, we have

E[Xg(X)] = E[Xg(X)1{X>0}]−E[Xg(−X)1{X>0}] = E[Xg(X)1{X>0}]−E[Xg(X)1{X>0}] = 0.
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Theorem 1.5 (AM greater than GM). For any two random variables X,Y, the correlation is upper bounded by the
average of the second moments, with equality iff X = Y almost surely. That is,

E[XY]6
1
2
(EX2 + EY2).

Proof. This follows from the linearity and monotonicity of expectations and the fact that (X−Y)2 > 0 with
equality iff X = Y.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X,Y, the correlation of absolute values
of X and Y is upper bounded by the square root of product of second moments, with equality iff X = αY for any
constant α ∈R. That is,

E |XY|6
√

EX2EY2.

Proof. For two random variables X and Y, we can define normalized random variables W , |X|√
EX2 and

Z , |Y|√
EY2 , to get the result.

2 Covariance

Definition 2.1 (Covariance). For two random variables X,Y defined on the same probability space, the
covariance between these two random variables is defined as cov(X,Y), E(X−EX)(Y−EY).

Lemma 2.2. If the random variables X,Y are called uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X,Y as

cov(X,Y) = E(X−EX)(Y−EY) = EXY− (EX)(EY) = 0.

Lemma 2.3. Let X : Ω→Rn be an uncorrelated random vector and a = (a1, . . . , an) ∈Rn, then

Var

(
n

∑
i=1

aiXi

)
=

n

∑
i=1

a2
i Var (Xi) .

Proof. From the linearity of expectation, we can write the variance of the linear combination as

E

(
n

∑
i=1

ai(Xi −EXi)

)2

=
n

∑
i=1

a2
i Var Xi + ∑

i 6=j
cov(Xi, Xj).

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X,Y and the
square root of product of their variances is called the correlation coefficient and denoted by

ρX,Y ,
cov(X,Y)√

Var(X),Var(Y)
.

Theorem 2.5 (Correlation coefficient). For any two random variables X,Y, the absolute value of correlation co-

efficient is less than or equal to unity, with equality iff X = αY + β almost surely for constants α =
√

Var(X)
Var(Y) and

β = EX− αEY.

Proof. For two random variables X and Y, we can define normalized random variables W , X−EX√
Var(X)

and

Z , Y−EY√
Var(Y)

. Applying the AM-GM inequality to random variables W, Z, we get

|cov(X,Y)|6
√

Var(X)Var(Y).

Recall that equality is achieved iff W = Z almost surely or equivalently iff X = αY + β almost surely. Taking
U = −Y, we see that −cov(X,Y)6

√
Var(X)Var(Y), and hence the result follows.
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3 Generalizations

Definition 3.1 (Convex function). A real-valued function f : R→R is convex if for all x,y∈R and θ ∈ [0,1],
we have

f (θx + (1− θ)y)6 θ f (x) + (1− θ) f (y).

Theorem 3.2 (Jensen’s inequality). For any convex function f : R→R and random variable X, we have

f (EX)6 E f (X).

Proof. It suffices to show this for simple random variables X : Ω→ X. We show this by induction on cardi-
nality of alphabet X. The inequality is trivially true for |X| = 1. We assume that the inductive hypothesis is
true for |X| = n.

Let X ∈ X, where |X| = n + 1. We can denote X = {x1, . . . , xn+1} with pi , P{X = xi} for all i ∈ [n + 1].
We observe that (

pj
1−p1

: j> 2) is a probability mass function for some random variable Y ∈ Y= {x2, . . . , xn+1}
with cardinality n. Hence, by inductive hypothesis, we have

f

(
n+1

∑
i=2

pi
1− p1

xi

)
= f (EY)6 E f (Y) =

n+1

∑
i=2

pi
1− p1

f (xi).

Next, we consider a random variable Z ∈
{

x1,∑n+1
i=2

pi
1−p1

xi

}
with probability mass function (p1,1− p1).

From the convexity of f and the inductive step, we can write

f (EX) = f (
n+1

∑
i=1

pixi) = f

(
p1x1 + (1− p1)

n+1

∑
i=2

pi
1− p1

xi

)
= f (EZ)6 E f (Z) =

n+1

∑
i=1

pi f (xi) = E f (X).

Theorem 3.3 (Hölder’s inequality). Consider two random variables X,Y such that E |X|p and E |Y|q are finite
for p,q > 1 such that 1

p + 1
q = 1. Then,

E |XY|6 (E |X|p)
1
p (E |Y|q)

1
q .

Proof. Recall that f (x) = ex is a convex function. Therefore, for random variable Z ∈ {p lnV,q lnW} with
PMF ( 1

p , 1
q ), it follows from Jensen’s inequality that

VW = f (EZ)6 E f (Z) =
Vp

p
+

Wq

q
.

Taking expectation on both sides, we get from the monotonicity of expectation that EVW 6 EVp

p + EWq

q .

Taking V , |X|

(E|X|p)
1
p

and W , |Y|

(E|Y|q)
1
q

, we get the result.

4 Lp spaces

Definition 4.1. We define a function ‖‖p : Lp→R+ defined by ‖‖p (X) = ‖X‖p , (E |X|p)1/p for any X ∈ Lp

and real p > 1.

Definition 4.2. Given a vector space V of random variables, a norm on the vector space is a map f : V→R+

such that

homogeneity: f (aX) = |a| f (X) for all a ∈R and X ∈ V,

sub-additivity: f (X + Y)6 f (X) + f (Y) for all X,Y ∈ V, and

point-separating: f (X)> 0 for all X ∈ V.
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Example 4.3. For p = 1, the map ‖‖p is norm. We will show that ‖X‖∞ = sup{|X(ω)| : ω ∈Ω}, and
hence L∞ is the vector space of bounded random variables. It follows that the function ‖‖p is a norm
for vector space Lp for p ∈ {1,∞}. We will also show that ‖‖p is a norm for all p > 1.

Definition 4.4. For p,q > 1 with 1
p + 1

q = 1, (p,q) is called the conjugate pair, and the spaces Lp and Lq are
called dual spaces.

Example 4.5. The dual of L1 space is L∞. The space L2 is dual of itself, and called a Hilbert space.

Definition 4.6. For a pair of random variables (X,Y) ∈ (Lp, Lq) for conjugate pair (p,q), we can define inner
product 〈〉 : Lp × Lq→R by

〈〉 (X,Y), 〈X,Y〉, EXY.

Remark 1. This inner product is well defined for the conjugate pair (1,∞).

Remark 2. The inner product 〈〉 is well defined by Hölder’s inequality. We can show that ‖‖p is a norm by
proving the Minkowski’s inequality. Then, we can define distance between two random variables X1, X2 ∈
Lp by the norm ‖X1 − X2‖p. Therefore, Lp is a normed vector space.
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