Lecture-09: Correlation

1 Correlation

Exercise 1.1. Show that the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $g:(x, y) \mapsto x y$ is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the correlation between these two random variables is defined as $\mathbb{E}[X Y]$. If $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, then the random variables X, Y are called uncorrelated.

Lemma 1.3. If X, Y are independent random variables, then they are uncorrelated.
Proof. It suffices to show for X, Y simple and independent random variables. We can write $X=\sum_{x \in x} x \mathbb{1}_{A_{x}}$ and $Y=\sum_{y \in y} y \mathbb{1}_{B_{y}}$. Therefore,

$$
\mathbb{E}[X Y]=\sum_{(x, y) \in X \times y} x y P\left\{A_{x} \cap B_{y}\right\}=\sum_{x \in X} x P\left(A_{x}\right) \sum_{y \in y} y P\left(B_{y}\right)=\mathbb{E}[X] \mathbb{E}[Y] .
$$

Proof. If X, Y are independent random variables, then the joint distribution $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\mathbb{E}[X Y]=\int_{(x, y) \in \mathbb{R}^{2}} x y d F_{X, Y}(x, y)=\int_{x \in \mathbb{R}} x d F_{X}(x) \int_{y \in \mathbb{R}} y d F_{Y}(y)=\mathbb{E}[X] \mathbb{E}[Y] .
$$

Example 1.4 (Uncorrelated dependent random variables). Let $X: \Omega \rightarrow \mathbb{R}$ be a continuous random variable with even density function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, and $g: \mathbb{R} \rightarrow \mathbb{R}$ be another even function that is increasing for $y \in \mathbb{R}_{+}$. Then g is Borel measurable function and $Y=g(X)$ is a random variable. Further, we can verify that X, Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x, y such that $x>x_{y}=g^{-1}(y)$ and $F_{X}(x)<1$. Then, we can write the set $B_{y}=\{Y \leqslant y\}=\{g(X) \leqslant y\}=\left\{-x_{y} \leqslant X \leqslant x_{y}\right\}$. Hence, we can write the joint distribution at (x, y) as

$$
F_{X, Y}(x, y)=P\{X \leqslant x, Y \leqslant y\}=P\left(A_{x} \cap B_{y}\right)=P\left(B_{y}\right)=F_{Y}(y) \neq F_{X}(x) F_{Y}(y) .
$$

Since X has even density function, we have $f_{X}(x)=f_{X}(-x)$ for all $x \in \mathbb{R}$. Therefore, we have

$$
\mathbb{E} X g(X) \mathbb{1}_{\{X<0\}}=\int_{x<0} x g(x) f_{X}(x) d x=\int_{u>0}(-u) g(-u) f_{X}(u) d u=-\mathbb{E} X g(-X) \mathbb{1}_{\{X>0\}} .
$$

Further, since the function g is even, we have $g(X)=g(-X)$. Therefore, we have

$$
\mathbb{E}[X g(X)]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]-\mathbb{E}\left[X g(-X) \mathbb{1}_{\{X>0\}}\right]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]-\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]=0 .
$$

Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the average of the second moments, with equality iff $X=Y$ almost surely. That is,

$$
\mathbb{E}[X Y] \leqslant \frac{1}{2}\left(\mathbb{E} X^{2}+\mathbb{E} Y^{2}\right)
$$

Proof. This follows from the linearity and monotonicity of expectations and the fact that $(X-Y)^{2} \geqslant 0$ with equality iff $X=Y$.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values of X and Y is upper bounded by the square root of product of second moments, with equality iff $X=\alpha Y$ for any constant $\alpha \in \mathbb{R}$. That is,

$$
\mathbb{E}|X Y| \leqslant \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}
$$

Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{|X|}{\sqrt{\mathbb{E} X^{2}}}$ and $Z \triangleq \frac{|Y|}{\sqrt{\mathbb{E} Y^{2}}}$, to get the result.

2 Covariance

Definition 2.1 (Covariance). For two random variables X, Y defined on the same probability space, the covariance between these two random variables is defined as $\operatorname{cov}(X, Y) \triangleq \mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)$.
Lemma 2.2. If the random variables X, Y are called uncorrelated, then the covariance is zero.
Proof. We can write the covariance of uncorrelated random variables X, Y as

$$
\operatorname{cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)=\mathbb{E} X Y-(\mathbb{E} X)(\mathbb{E} Y)=0
$$

Lemma 2.3. Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be an uncorrelated random vector and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

Proof. From the linearity of expectation, we can write the variance of the linear combination as

$$
\mathbb{E}\left(\sum_{i=1}^{n} a_{i}\left(X_{i}-\mathbb{E} X_{i}\right)\right)^{2}=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var} X_{i}+\sum_{i \neq j} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X, Y and the square root of product of their variances is called the correlation coefficient and denoted by

$$
\rho_{X, Y} \triangleq \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X), \operatorname{Var}(Y)}}
$$

Theorem 2.5 (Correlation coefficient). For any two random variables X, Y, the absolute value of correlation coefficient is less than or equal to unity, with equality iff $X=\alpha Y+\beta$ almost surely for constants $\alpha=\sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}}$ and $\beta=\mathbb{E} X-\alpha \mathbb{E} Y$.
Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{X-\mathbb{E} X}{\sqrt{\operatorname{Var}(X)}}$ and $Z \triangleq \frac{Y-\mathbb{E} Y}{\sqrt{\operatorname{Var}(Y)}}$. Applying the AM-GM inequality to random variables W, Z, we get

$$
|\operatorname{cov}(X, Y)| \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

Recall that equality is achieved iff $W=Z$ almost surely or equivalently iff $X=\alpha Y+\beta$ almost surely. Taking $U=-Y$, we see that $-\operatorname{cov}(X, Y) \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$, and hence the result follows.

3 Generalizations

Definition 3.1 (Convex function). A real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}$ and $\theta \in[0,1]$, we have

$$
f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y) .
$$

Theorem 3.2 (Jensen's inequality). For any convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and random variable X, we have

$$
f(\mathbb{E} X) \leqslant \mathbb{E} f(X) .
$$

Proof. It suffices to show this for simple random variables $X: \Omega \rightarrow X$. We show this by induction on cardinality of alphabet X. The inequality is trivially true for $|X|=1$. We assume that the inductive hypothesis is true for $|X|=n$.

Let $X \in X$, where $|X|=n+1$. We can denote $X=\left\{x_{1}, \ldots, x_{n+1}\right\}$ with $p_{i} \triangleq P\left\{X=x_{i}\right\}$ for all $i \in[n+1]$. We observe that $\left(\frac{p_{j}}{1-p_{1}}: j \geqslant 2\right)$ is a probability mass function for some random variable $Y \in y=\left\{x_{2}, \ldots, x_{n+1}\right\}$ with cardinality n. Hence, by inductive hypothesis, we have

$$
f\left(\sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} x_{i}\right)=f(\mathbb{E} Y) \leqslant \mathbb{E} f(Y)=\sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} f\left(x_{i}\right) .
$$

Next, we consider a random variable $Z \in\left\{x_{1}, \sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} x_{i}\right\}$ with probability mass function ($p_{1}, 1-p_{1}$). From the convexity of f and the inductive step, we can write

$$
f(\mathbb{E} X)=f\left(\sum_{i=1}^{n+1} p_{i} x_{i}\right)=f\left(p_{1} x_{1}+\left(1-p_{1}\right) \sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} x_{i}\right)=f(\mathbb{E} Z) \leqslant \mathbb{E} f(Z)=\sum_{i=1}^{n+1} p_{i} f\left(x_{i}\right)=\mathbb{E} f(X) .
$$

Theorem 3.3 (Hölder's inequality). Consider two random variables X, Y such that $\mathbb{E}|X|^{p}$ and $\mathbb{E}|Y|^{q}$ are finite for $p, q \geqslant 1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then,

$$
\mathbb{E}|X Y| \leqslant\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}} .
$$

Proof. Recall that $f(x)=e^{x}$ is a convex function. Therefore, for random variable $Z \in\{p \ln V, q \ln W\}$ with PMF ($\frac{1}{p}, \frac{1}{q}$), it follows from Jensen's inequality that

$$
V W=f(\mathbb{E} Z) \leqslant \mathbb{E} f(Z)=\frac{V^{p}}{p}+\frac{W^{q}}{q} .
$$

Taking expectation on both sides, we get from the monotonicity of expectation that $\mathbb{E} V W \leqslant \frac{\mathbb{E} V^{p}}{p}+\frac{\mathbb{E} W^{q}}{q}$.
Taking $V \triangleq \frac{|X|}{\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}}$ and $W \triangleq \frac{|Y|}{\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}}}$, we get the result.

$4 \quad L^{p}$ spaces

Definition 4.1. We define a function $\left\|\|_{p}: L^{p} \rightarrow \mathbb{R}_{+}\right.$defined by $\|\left\|_{p}(X)=\right\| X \|_{p} \triangleq\left(\mathbb{E}|X|^{p}\right)^{1 / p}$ for any $X \in L^{p}$ and real $p \geqslant 1$.

Definition 4.2. Given a vector space V of random variables, a norm on the vector space is a map $f: V \rightarrow \mathbb{R}_{+}$ such that
homogeneity: $f(a X)=|a| f(X)$ for all $a \in \mathbb{R}$ and $X \in V$,
sub-additivity: $f(X+Y) \leqslant f(X)+f(Y)$ for all $X, Y \in V$, and
point-separating: $f(X) \geqslant 0$ for all $X \in V$.

Example 4.3. For $p=1$, the map $\left\|\|_{p}\right.$ is norm. We will show that $\| X \|_{\infty}=\sup \{|X(\omega)|: \omega \in \Omega\}$, and hence L^{∞} is the vector space of bounded random variables. It follows that the function $\left\|\|_{p}\right.$ is a norm for vector space L^{p} for $p \in\{1, \infty\}$. We will also show that $\left\|\|_{p}\right.$ is a norm for all $p \geqslant 1$.

Definition 4.4. For $p, q \geqslant 1$ with $\frac{1}{p}+\frac{1}{q}=1,(p, q)$ is called the conjugate pair, and the spaces L^{p} and L^{q} are called dual spaces.

Example 4.5. The dual of L^{1} space is L^{∞}. The space L^{2} is dual of itself, and called a Hilbert space.

Definition 4.6. For a pair of random variables $(X, Y) \in\left(L^{p}, L^{q}\right)$ for conjugate pair (p, q), we can define inner product $\left\rangle: L^{p} \times L^{q} \rightarrow \mathbb{R}\right.$ by

$$
\rangle(X, Y) \triangleq\langle X, Y\rangle \triangleq \mathbb{E} X Y .
$$

Remark 1. This inner product is well defined for the conjugate pair $(1, \infty)$.
Remark 2. The inner product $\left\rangle\right.$ is well defined by Hölder's inequality. We can show that $\left\|\|_{p}\right.$ is a norm by proving the Minkowski's inequality. Then, we can define distance between two random variables $X_{1}, X_{2} \in$ L^{p} by the norm $\left\|X_{1}-X_{2}\right\|_{p}$. Therefore, L^{p} is a normed vector space.

