Lecture-13: Almost sure convergence of random variables

1 Almost sure convergence

Consider a probability space (Ω, \mathcal{F}, P) . Recall that a random variable X is an \mathcal{F} -measurable function on the sample space Ω such that $X^{-1}(-\infty,x] \in \mathcal{F}$ for all $x \in \mathbb{R}$. A sequence of random variables $X:\Omega \to \mathbb{R}^{\mathbb{N}}$ is hence a sequence of \mathcal{F} -measurable functions. There are many possible definitions for convergence of a sequence of random variables. One idea is to require $X_n(\omega)$ to converge for each fixed ω . However, at least intuitively, what happens on an event of probability zero is not important.

Definition 1.1. A statement holds **almost surely** (abbreviated a.s.) if there exists an event called the **exception set** $N \in \mathcal{F}$ with P(N) = 0 such that the statement holds if $\omega \notin N$.

Example 1.2 (Almost sure equality). Two random variables X,Y defined on the probability space (Ω,\mathcal{F},P) are said to be equal a.s. if there exists an exception set

$$N = \{\omega \in \Omega : X(\omega) \neq Y(\omega)\} \in \mathcal{F}$$

and P(N) = 0. Then Y is called a **version** of X, and we can define an equivalence class of a.s. equal random variables.

Example 1.3 (Almost sure monotonicity). Two random variables X,Y defined on the probability space (Ω,\mathcal{F},P) are said to be $X\leqslant Y$ a.s. if there exists an exception set $N=\{\omega\in\Omega:X(\omega)>Y(\omega)\}\in\mathcal{F}$ and P(N)=0.

Definition 1.4. If $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ is a sequence of random variables, then $\lim_n X_n$ exists a.s. means there exists an exception event $N \in \mathcal{F}$, such that P(N) = 0 and if $\omega \notin N$, then $\lim_n X_n(\omega)$ exists. That is,

$$N^c = \left\{ \omega \in \Omega : \limsup_n X_n(\omega) = \liminf_n X_n(\omega) \right\}.$$

Let X_{∞} be the point-wise limit of the sequence of random variables $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ on the set N^c , then we say that the sequence X **converges almost surely** to X_{∞} , and denote it as

$$\lim_{n} X_{n} = X_{\infty} \text{ a.s.}$$

Example 1.5 (Convergence almost surely but not everywhere). Consider the probability space $([0,1],\mathcal{B}([0,1]),\lambda)$ such that $\lambda([a,b])=b-a$ for all $0 \le a \le b \le 1$. For each $n \in \mathbb{N}$, we define the scaled indicator random variable $X_n:\Omega \to \{0,1\}$ such that

$$X_n(\omega) \triangleq n \mathbb{1}_{\left[0,\frac{1}{n}\right]}(\omega).$$

Let $N = \{0\}$, then for any $\omega \notin N$, there exists $m = \lceil \frac{1}{\omega} \rceil \in \mathbb{N}$, such that for all $n \geqslant m$, we have $X_n(\omega) = 0$. That is, $\lim_n X_n = 0$ a.s. since $\lambda(N) = 0$. However, $X_n(0) = n$ for all $n \in \mathbb{N}$.

2 Convergence in probability

Definition 2.1. A sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ of random variables **converges in probability** to a random variable $X_{\infty} : \Omega \to \mathbb{R}$, if for any $\epsilon > 0$

$$\lim_{n} P\{\omega \in \Omega : |X_{n}(\omega) - X_{\infty}(\omega)| > \epsilon\} = 0.$$

Remark 1. For a sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$, almost sure convergence means that for almost all outcomes ω , the difference $X_n(\omega) - X_{\infty}(\omega)$ gets small and stays small. Convergence in probability is weaker and merely requires that the probability of the difference $X_n(\omega) - X_{\infty}(\omega)$ being non-trivial becomes small.

Example 2.2 (Convergence in probability but not almost surely). Consider the probability space $([0,1],\mathcal{B}([0,1]),\lambda)$ such that $\lambda([a,b])=b-a$ for all $0\leqslant a\leqslant b\leqslant 1$. For each $k\in\mathbb{N}$, we consider the sequence $S_k=\sum_{i=1}^k i$, and define integer intervals $I_k\triangleq\{S_{k-1}+1,\ldots,S_k\}$. Clearly, the intervals $(I_k:k\in\mathbb{N})$ partition the natural numbers, and each $n\in\mathbb{N}$ lies in some I_k , such that $n=S_{k-1}+i$ for $i\in[k]$. Therefore, for each $n\in\mathbb{N}$, we define indicator random variable $X_n:\Omega\to\{0,1\}$ such that

$$X_n(\omega) = \mathbb{1}_{\left[\frac{i-1}{k}, \frac{i}{k}\right]}(\omega).$$

For any $\omega \in [0,1]$, we have $X_n(\omega) = 1$ for infinitely many values since there exist infinitely many (i,k) pairs such that $\frac{(i-1)}{k} \leqslant \omega \leqslant \frac{i}{k}$, and hence $\limsup_n X_n(\omega) = 1$ and hence $\lim_n X_n(\omega) \neq 0$. However, $\lim_n X_n(\omega) = 0$ in probability, since

$$\lim_{n} \lambda \left\{ X_{n}(\omega) \neq 0 \right\} = \lim_{n} \frac{1}{k} = 0.$$

3 Borel-Cantelli Lemma

Lemma 3.1 (infinitely often and almost all). *Let* $(A_n \in \mathcal{F} : n \in \mathbb{N})$ *be a sequence of events.*

(a) For some subsequence $(k_n : n \in \mathbb{N})$ depending on ω , we have

$$\limsup_n A_n = \left\{ \omega \in \Omega : \omega \in A_{k_n}, n \in \mathbb{N} \right\} = \left\{ \omega \in \Omega : \sum_{n \in \mathbb{N}} \mathbb{1}_{A_n}(\omega) = \infty \right\} = \left\{ A_n \text{ infinitely often } \right\}.$$

(b) For a finite $n_0(\omega) \in \mathbb{N}$ depending on ω , we have

$$\liminf_{n} A_{n} = \{\omega \in \Omega : \omega \in A_{n} \text{ for all } n \geqslant n_{0}(\omega)\} = \left\{\omega \in \Omega : \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{n}^{c}}(\omega) < \infty\right\} = \left\{A_{n} \text{ for all but finitely many } n\right\}.$$

Proof. Let $(A_n \in \mathcal{F} : n \in \mathbb{N})$ be a sequence of events.

(a) Let $\omega \in \limsup_n A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geqslant n} A_k$, then $\omega \in \bigcup_{k \geqslant n} A_k$ for all $n \in \mathbb{N}$. Therefore, for each $n \in \mathbb{N}$, there exists $k_n \in \mathbb{N}$ such that $\omega \in A_{k_n}$, and hence

$$\sum_{j\in\mathbb{N}}\mathbbm{1}_{A_j}(\omega)\geqslant \sum_{n\in\mathbb{N}}\mathbbm{1}_{A_{k_n}}(\omega)=\infty.$$

Conversely, if $\sum_{j\in\mathbb{N}} \mathbb{1}_{A_j}(\omega) = \infty$, then for each $n \in \mathbb{N}$ there exists a $k_n \in \mathbb{N}$ such that $\omega \in A_{k_n}$ and hence $\omega \in \bigcup_{k \geqslant n} A_k$ for all $n \in \mathbb{N}$.

(b) Let $\omega \in \liminf_n A_n = \bigcup_{n \in \mathbb{N}} \cap_{k \geqslant n} A_k$, then there exists $n_0(\omega)$ such that $\omega \in A_n$ for all $n \geqslant n_0(\omega)$. Conversely, if $\sum_{j \in \mathbb{N}} \mathbb{1}_{A_c^c}(\omega) < \infty$, then there exists $n_0(\omega)$ such that $\omega \in A_n$ for all $n \geqslant n_0(\omega)$.

Theorem 3.2 (Convergence a.s. implies in probability). *If a sequence of random variables* $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ *defined on a probability space* (Ω, \mathcal{F}, P) *converges a.s. to a random variable* $X_{\infty} : \Omega \to \mathbb{R}$, *then it converges in probability to the same random variable.*

Proof. Let $\epsilon > 0$, and define events $A_n \triangleq \{\omega \in \Omega : |X_n(\omega) - X_\infty(\omega)| > \epsilon\}$ for each $n \in \mathbb{N}$. We will show that if $\lim_n X_n = X_\infty$ a.s., then $\lim_n P(A_n) = 0$. To this end, let N be the exception set such that $N \triangleq \{\omega \in \Omega : \liminf_n X_n(\omega) < \limsup_n X_n(\omega)\}$. For $\omega \notin N$, there exists an $n_0(\omega)$ such that $|X_n - X_\infty| \leq \epsilon$ for all $n \geq n_0$. Therefore, we have $N^c \subseteq \liminf_n A_n^c$, and hence $1 = P(\liminf_n A_n^c)$. Since $\liminf_n A_n^c = (\limsup_n A_n)^c$, we get

$$0 = P(\limsup_{n} A_n) = \lim_{n} P(\cup_{k \geqslant n} A_k) \geqslant \lim_{n} P(A_n) \geqslant 0.$$

Proposition 3.3 (Borel-Cantelli Lemma). *Let* $(A_n \in \mathcal{F} : n \in \mathbb{N})$ *be a sequence of events such that* $\sum_{n \in \mathbb{N}} P(A_n) < \infty$ *, then* $P(A_n i.o.) = 0$.

Proof. We can write the probability of infinitely often occurrence of A_n , by the continuity and sub-additivity of probability as

$$P(\limsup_{n} A_{n}) = \lim_{n} P(\cup_{k \geqslant n} A_{k}) \leqslant \lim_{n} \sum_{k \geqslant n} P(A_{k}) = 0.$$

The last equality follows from the fact that $\sum_{n\in\mathbb{N}} P(A_n) < \infty$.

Proposition 3.4 (Borel zero-one law). *If* $(A_n \in \mathcal{F} : n \in \mathbb{N})$ *is a sequence of independent events, then*

$$P(A_n \text{ i.o.}) = \begin{cases} 0, & \text{iff } \sum_n P(A_n) < \infty, \\ 1, & \text{iff } \sum_n P(A_n) = \infty. \end{cases}$$

Proof. Let $(A_n \in \mathcal{F} : n \in \mathbb{N})$ be a sequence of independent events.

- (a) From Borel-Cantelli Lemma, if $\sum_{n} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.
- (b) Conversely, suppose $\sum_n P(A_n) = \infty$, then $\sum_{k \geqslant n} P(A_k) = \infty$ for all $n \in \mathbb{N}$. From the definition of lim sup and liminf, continuity of probability, and independence of events $(A_k \in \mathcal{F} : k \in \mathbb{N})$ we get

$$P(A_n \text{ i.o.}) = 1 - P(\liminf_n A_n^c) = 1 - \lim_n \lim_m P(\cap_{k=n}^m A_k^c) = 1 - \lim_n \lim_m \prod_{k=n}^m (1 - P(A_k)).$$

Since $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$, from the above equation, the continuity of exponential function, and the hypothesis, we get

$$1 \geqslant P(A_n \text{ i.o.}) \geqslant 1 - \lim_{n \to \infty} \lim_{m \to \infty} e^{-\sum_{k=n}^{m} P(A_k)} = 1 - \lim_{n \to \infty} \exp(-\sum_{k \geqslant n} P(A_k)) = 1.$$

Example 3.5 (Convergence in probability can imply almost sure convergence). Consider a sequence of Bernoulli random variables $X : \Omega \to \{0,1\}^{\mathbb{N}}$ defined on the probability space (Ω, \mathcal{F}, P) such that $P\{X_n = 1\} = p_n$ for all $n \in \mathbb{N}$. Note that the sequence of random variables is not assumed to be independent, and definitely not identical. If $\lim_n p_n = 0$, then we see that $\lim_n X_n = 0$ in probability.

In addition, if $\sum_{n\in\mathbb{N}} p_n < \infty$, then $\lim_n X_n = 0$ a.s. To see this, we define event $A_n \triangleq \{X_n = 1\} \in \mathcal{F}$ for each $n \in \mathbb{N}$. Then, applying the Borel-Cantelli Lemma to sequence of events $(A_n : n \in \mathbb{N})$, we get

$$1 = P((\limsup_{n} A_n)^c) = P(\liminf_{n} A_n^c).$$

That is, $\lim_n X_n = 0$ for $\omega \in \liminf_n A_n^c$, implying almost sure convergence.

Theorem 3.6. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ converges to a random variable $X_{\infty} : \Omega \to \mathbb{R}$ in probability, then there exists a subsequence $(n_k : k \in \mathbb{N}) \subset \mathbb{N}$ such that $(X_{n_k} : k \in \mathbb{N})$ converges almost surely to X_{∞} .

Proof. Letting $n_1 = 1$, we define the following subsequence and event recursively for each $j \in \mathbb{N}$,

$$n_{j} \triangleq \inf \left\{ N > n_{j-1} : P\left\{ \left| X_{r} - X_{\infty} \right| > 2^{-j} \right\} < 2^{-j}, \text{ for all } r \geqslant N \right\}, \qquad A_{j} \triangleq \left\{ \left| X_{n_{j+1}} - X_{\infty} \right| > 2^{-j} \right\}.$$

From the construction, we have $\lim_k n_k = \infty$, and $P(A_j) < 2^{-j}$ for each $j \in \mathbb{N}$. Therefore, $\sum_{k \in \mathbb{N}} P(A_k) < \infty$, and hence by the Borel-Cantelli Lemma, we have $P(\limsup_k A_k) = 0$. Let $N = \limsup_k A_k$ be the exception set such that for any outcome $\omega \notin N$, for all but finitely many $j \in \mathbb{N}$

$$\left|X_{n_j}(\omega)-X_{\infty}(\omega)\right|\leqslant 2^{-j}.$$

That is, for all $\omega \notin N$, we have $\lim_n X_n(\omega) = X_\infty(\omega)$.

Theorem 3.7. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ converges to a random variable X_{∞} in probability iff each subsequence $(X_{n_k} : k \in \mathbb{N})$ contains a further subsequence $(X_{n_{k_j}} : j \in \mathbb{N})$ converges almost surely to X_{∞} .