
Lecture-14: Lp convergence of random variables

1 Lp space

Definition 1.1 (Lp space). Consider a probability space (Ω,F, P). For any p > 1, we say that a random

variable X ∈ Lp, if (E |X|p)
1
p < ∞, and we can define a norm

‖X‖p , (E |X|p)
1
p .

Theorem 1.2 (Minkowski’s inequality). Norm on the Lp satisfies the triangle inequality. That is, if X,Y ∈ Lp,
then X + Y ∈ Lp and

‖X + Y‖p 6 ‖X‖p + ‖Y‖p .

Proof. We first show that X + Y ∈ Lp. To this end, it suffices to show that ‖X + Y‖p is bounded if ‖X‖p and
‖Y‖p are bounded. From the convexity of g(x) = |x|p for p > 1, we get

|X + Y|p 6 1
2
|2X|p + 1

2
|2Y|p = 2p−1(|X|p + |Y|p).

Taking expectation on both sides, it follows from the linearity of expectation, ‖X + Y‖p 6 2p−1(‖X‖p +

‖Y‖p).
We now show that ‖‖p is a norm and satisfies the triangle inequality. From the triangle equality

|X + Y| 6 |X| + |Y| for two random variables X,Y ∈ Lp, the linearity of expectation, and the Hölder in-
equality for pair of random variables X, (X + Y)p−1 and Y, (X + Y)p−1, we get

E |X + Y|p 6 E |X| |X + Y|p−1 + E |Y| |X + Y|p−1 6 ((E |X|p)
1
p + (E |Y|p)

1
p )(E |X + Y|p)1− 1

p .

Theorem 1.3. For a probability space (Ω,F, P) and q > p > 1, we have Lq ⊆ Lp.

Proof. Consider q > p > 1, and a random variable X ∈ Lq defined on the probability space (Ω,F, P). Apply-
ing Hölder’s inequality to the product of random variables |X|p · 1 with conjugate variables p′ , q

p > 1 and

q′ , q
q−p > 1, we get E |X|p = E[|X|

q
p′ · 1]6 (E |X|q)

1
p′ .

Example 1.4 (Mean square error). Consider a sequence of random variables X : Ω→RN such that

m , EXn, ρk , cov(XnXn+k) for all n,k ∈N.

The best linear predictor of Xn+1 based on X1, . . . , Xn is given by X̂n+1 = ∑n
i=1 αiXi for (α1, . . . ,αn) ∈Rn

such that the mean square error is minimized. Taking α0 = −1, we have

E
∣∣Xn+1 − X̂n+1

∣∣2 = min
α∈Rn

(
ρ0 + m2 +

n

∑
i=1

α2
i (ρ0 + m2)− 2

n

∑
i=1

αi((m2 + ρn+1−i)−
n−i

∑
k=1

αi+k(m2 + ρk))
)

.

Taking derivatives with respect to coefficients α ∈Rn, we get

αi(ρ0 + m2) = m2 + ρn+1−i −
n−i

∑
k=1

αi+k(m2 + ρk), i ∈ [n].
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2 Lp convergence

Definition 2.1 (Convergence in Lp). A sequence X : Ω→ RN of random variables converges in Lp to a
random variable X∞ : Ω→R, if

lim
n

E |Xn − X∞|p = 0.

Proposition 2.2 (Convergences Lp implies in probability). Consider a sequence of random variables X : Ω→
RN such that limn Xn = X∞ in Lp, then limn Xn = X∞ in probability.

Proof. Let ε > 0, then from the Markov’s inequality applied to random variable |Xn − X|p, we have

P{|Xn − X∞| > ε}6 E |Xn − X∞|p

ε
.

Example 2.3 (Convergence in probability doesn’t imply in Lp). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b− a for all 0 6 a 6 b 6 1. We define the scaled indicator random
variable Xn : Ω→ {0,1} such that

Xn(ω) = 2n
1[0, 1

n ]
(ω).

Then, limn Xn = 0 in probability, since for any 1 > ε > 0, we have

P{|Xn| > ε} = 1
n

.

However, we see that E |Xn|p = 2np

n .

Theorem 2.4 (L2 weak law of large numbers). Consider a sequence of uncorrelated random variables X : Ω→
RN such that EXn = µ and Var(Xn) = σ2. Defining the sum Sn , ∑n

i=1 Xi and the empirical mean X̄n , Sn
n , we

have limn X̄n = µ in L2 and in probability.

Proof. This follows from the fact that Var X̄n = E(X̄n − µ)2 = 1
n2 E(Sn − nµ)2 = σ2

n . Convergence in Lp im-
plies convergence in probability, and hence the result holds.

Example 2.5 (Convergence in Lp doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b− a for all 0 6 a 6 b 6 1. For each k ∈N, we consider the se-
quence Sk = ∑k

i=1 i, and define integer intervals Ik , {Sk−1 + 1, . . . ,Sk}. Clearly, the intervals (Ik : k ∈N)
partition the natural numbers, and each n ∈N lies in some Ik, such that n = Sk−1 + i for i ∈ [k]. There-
fore, for each n ∈N, we define indicator random variable Xn : Ω→ {0,1} such that

Xn(ω) = 1[ i−1
k , i

k ]
(ω).

For any ω ∈ [0,1], we have Xn(ω) = 1 for infinitely many values since there exist infinitely many (i,k)
pairs such that (i−1)

k 6 ω 6 i
k , and hence limsupn Xn(ω) = 1 and hence limn Xn(ω) 6= 0. However,

limn Xn(ω) = 0 in Lp, since

E |Xn|p = λ{Xn(ω) 6= 0} = 1
kn

.
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3 L1 convergence theorems

Theorem 3.1 (Monotone Convergence Theorem). Consider a probability space (Ω,F, P) and a non-decreasing
non-negative random sequence X : Ω→ RN

+ such that Xn ∈ L1 for all n ∈N. Let X∞(ω) = supn Xn(ω) for all
ω ∈Ω, then

EX∞ = sup
n

EXn.

Proof. From the monotonicity of sequence X and the monotonicity of expectation, we have supn EXn 6
EX∞. Let α ∈ (0,1) and Y : Ω→R+ a non-negative simple random variable such that Y 6 X∞. We define

En , {ω ∈Ω : Xn(ω)> αY} ∈ F.

From the monotonicity of sequence X, the sequence of events (En ∈ F : n ∈ N) are monotonically non-
decreasing such that ∪n∈NEn = Ω. It follows that

αE[Y1En ]6 E[Xn1En ]6 EXn.

We will use the fact that limn E[Y1En ] = E[Y], then αEY 6 supn EXn. Taking supremum over all α ∈ (0,1)
and all simple functions Y 6 X∞, we get EX∞ 6 supn EXn.

Theorem 3.2 (Fatou’s Lemma). Consider a probability space (Ω,F, P) and a non-negative random sequence X :
Ω→RN

+ . Let X∞(ω), liminfn Xn(ω) for all ω ∈Ω, then

EX∞ 6 liminf
n

EXn.

Proof. We define Yn , infk>n Xk for all n ∈N. It follows that Y : Ω→RN
+ is a non-negative non-decreasing

sequence of random variables, and X∞ = supn Yn = limn Yn. By Motonone convergence theorem applies to
Y, we have EX∞ = supn EYn. The result follows from the monotonicity of expectation, and the fact that
Yn 6 Xk for all k > n, to get EYn 6 infk>n EXk.

Theorem 3.3 (Dominated Convergence Theorem). Let X : Ω→RN be a random sequence defined on a proba-
bility space (Ω,F, P). If limn Xn = X∞ a.s. and there exists a Y : Ω→R+ such that Y ∈ L1(F) and |Xn|6 Y a.s.,
then EX∞ = limn EXn.

Proof. From the hypothesis, we have Y + Xn > 0 a.s. and Y − Xn > 0 a.s. Therefore, from Fatou’s Lemma
and linearity of expectation, we have

EY + EX∞ 6 liminf
n

E(Y + Xn) = EY + liminf
n

EXn, EY−EX∞ 6 liminf
n

E(Y− Xn) = EY− limsup
n

EXn.

Therefore, we have limsupEXn 6 EX∞ 6 liminfEXn, and the result follows.

4 Uniform integrability

Definition 4.1 (uniform integrability). A family (Xt ∈ L1 : t ∈ T) of random variables indexed by T is
uniformly integrable if

lim
a→∞

sup
t∈T

E[|Xt|1{|Xt |>a}] = 0.

Example 4.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X1 ∈ L1

and lima E[|X1|1{|Xt |>a}] = 0. This is due to the fact that (Xn , |X|1{|X|6n} : n ∈N) is a sequence of
increasing random variables limn Xn = X. From monotone convergence theorem, we get limn E |Xn| =
E limn |Xn|. Therefore,

lim
a

E[|X|1{|X|>a}] = E |X| − lim
a

E[|X|1{|X|6a}] = 0.
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Proposition 4.3. Let X ∈ Lp and (An : n ∈N) ⊂ F be a sequence of events such that limn P(An) = 0, then

lim
n
‖|X|1An‖p = 0.

Example 4.4 (Dominated family). If there exists Y ∈ L1 such that supt∈T |Xt| 6 |Y|, then the family of
random variables (Xt : t ∈ T) is uniformly integrable. This is due to the fact that

sup
t∈T

E[|X|1{|X|>a}]6 E[|Y|1{|Y|>a}].

Example 4.5 (Finite family). then the family of random variables (Xt : t ∈ T) is uniformly integrable.
This is due to the fact that supt∈T |Xt|6 ∑t∈T |Xt| ∈ L1.

Theorem 4.6 (Convergence in probability with uniform integrability implies in Lp). Consider a sequence
of random variables (Xn : n ∈N) ⊂ Lp for p > 1. Then the following are equivalent.

(a) The sequence (Xn : n ∈N) converges in Lp, i.e. limn E |Xn − X|p = 0.

(b) The sequence (Xn : n ∈N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0.

(c) limn Xn = X in probability and the sequence (|Xn|p : n ∈N) is uniformly integrable.

Proof. For a random sequence (Xn : n ∈N) in Lp, we will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b) : We assume the sequence (Xn : n ∈N) converges in Lp. Then, from Minkowski’s inequality, we can
write

(E |Xn − Xm|p)
1
p 6 (E |Xn − X|p)

1
p + (E |Xm − X|p)

1
p .

(b) =⇒ (c) : We assume that the sequence (Xn : n ∈N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0. Let ε > 0,
then for each n ∈N, there exists Nε such that for all n,m > Nε

E |Xn − Xm|p 6
ε

2
.

Let Aa = {ω ∈ A : |Xn| > a}. Then, using triangle inequality and the fact that 1Aa 6 1, from the linearity
and monotonicity of expectation, we can write for n > Nε

(E[|Xn|p1{|Xn |>a}])
1
p 6 (E[|XNε |

p
1Aa ])

1
p + (E[|Xn − XNε |

p])
1
p 6 (E[|XNε |

p
1Aa ])

1
p +

ε

2
.

Therefore, we can write supn E[|Xn|p1{|Xn |>a}] 6 supm6Nε
E[|Xm|p1Aa ] +

ε
2 . Since (|Xn|p : n 6 Nε) is

finite family of random variables in L1, it is uniformly integrable. Therefore, there exists aε ∈ R+ such

that supm6Nε
(E[|Xm|p1Aa ])

1
p < ε

2 . Taking a′ = max{a, aε}, we get supn(E[|Xn|p1{|Xn |>a′}])
1
p 6 ε. Since

the choice of ε was arbitrary, it follows that

lim
a→∞

sup
n
(E[|Xn|p1{|Xn |>a′}])

1
p = 0.

The convergence in probability follows from the Markov inequality, i.e.

P
{
|Xn − Xm|p > ε

}
6

1
ε

E |Xn − Xm|p .

4



(c) =⇒ (a) : Since the sequence (Xn : n ∈ N) is convergent in probability to a random variable X, there exists a
subsequence (nk : k ∈N)⊂N such that limk Xnk = X a.s. Since (|Xn|p : n ∈N) is a family of uniformly
integrable sequence, by Fatou’s Lemma

E |X|p 6 liminf
k

E
∣∣Xnk

∣∣p 6 sup
n

E |Xn|p < ∞.

Therefore, X ∈ L1, and we define An(ε) = {|Xn − X| > ε} for any ε > 0. From Minkowski’s inequality,
we get

‖Xn − X‖p 6
∥∥∥(Xn − X)1{|Xn−X|p6ε}

∥∥∥
p
+

∥∥∥Xn1An(ε)

∥∥∥
p
+

∥∥∥X1An(ε)

∥∥∥
p

.

We can check that
∥∥∥(Xn − X)1Ac

n(ε)

∥∥∥
p
6 ε. Further, since limn Xn = X in probability, (An : n ∈N) ⊂ F

is decreasing sequence of events, and since Xn, X ∈ L1, we have limn

∥∥∥Xn1An(ε)

∥∥∥= limn

∥∥∥X1An(ε)

∥∥∥= 0.
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