Lecture-14: LY convergence of random variables

1 LP space

Definition 1.1 (L? space). Consider a probability space (Q0,F,P). For any p > 1, we say that a random

1
variable X € L7, if (E|X|P)? < o0, and we can define a norm

1
I1X1l, = (E[X]P)7.

Theorem 1.2 (Minkowski’s inequality). Norm on the LP satisfies the triangle inequality. That is, if X,Y € L?,
then X +Y € LP and
X+ YA, < 11X + 1Y)

Proof. We first show that X +Y € L. To this end, it suffices to show that || X + Y[|, is bounded if || X|| , and
|Y]|,, are bounded. From the convexity of g(x) = |x|F for p > 1, we get

1 1
IX+YP < 5 12X|P + > 2Y [P = 2P L(|X|P + |Y|P).

Taking expectation on both sides, it follows from the linearity of expectation, [|X + Y||, < 2’”_1(HXHP +
1Y1],)-
We now show that [|[|, is a norm and satisfies the triangle inequality. From the triangle equality

|X + Y| < |X] + Y] for two random variables X,Y € L?, the linearity of expectation, and the Holder in-
equality for pair of random variables X, (X + Y)P~1and Y, (X + Y)P~!, we get

1 1 _1
E|X+Y/P<EX||[X+YP ' +E[Y]|X+YP L < ((E|X|P)? + (E|Y|P)?)(E|X +Y|P)' 7.

O
Theorem 1.3. For a probability space (Q0,F,P) and q > p > 1, we have L7 C LP.
Proof. Consider g > p > 1, and a random variable X € L7 defined on the probability space (Q2,F,P). Apply-
ing Holder’s inequality to the product of random variables | X|? - 1 with conjugate variables p’ = % >1land
4 1
q' = ;5 > 1, weget E[X|P = E[|X|/ - 1] < (E|X|T)7. O

Example 1.4 (Mean square error). Consider a sequence of random variables X : Q — RN such that
m £ EX,, ok = cov (X, X, ) for all n,k € N.

The best linear predictor of X, 1 based on Xj, ..., X}, is given by )A(n_t'_l =Y" ;X for (ay,...,ay) €R"
such that the mean square error is minimized. Taking #g = —1, we have

(2 + prya—i) — Y k(2 + ).

5 2 . &
E| X1 — Zupa|* = min (po +m? + Y- (o0 +m?) 2
a€R i 1 k=1

i=1 i

n

Taking derivatives with respect to coefficients & € R", we get

n—i
wi(po +m?) = m* + ppp1-i — Y wipk(m® + ), i€ nl.
k=1



2 L convergence

Definition 2.1 (Convergence in LP). A sequence X : O — RN of random variables converges in L? to a
random variable X : QO — R, if
ImE X, — X|” =0.
n

Proposition 2.2 (Convergences L” implies in probability). Consider a sequence of random variables X : () —
RN such that lim, X, = Xeo in LP, then lim,, X,, = Xeo in probability.

Proof. Let € > 0, then from the Markov’s inequality applied to random variable |X,, — X|¥, we have

E X, — Xeol

P{|Xy — Xeo| > €} < -

Example 2.3 (Convergence in probability doesn’t imply in L”). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) = b — a for all 0 < a < b < 1. We define the scaled indicator random
variable X, : 3 — {0,1} such that

Xn(w) = 2”]].[0’%] ((U)

Then, lim, X, = 0 in probability, since for any 1 > € > 0, we have

1
P{|Xa| > e} = .

However, we see that E | X, |V = %

Theorem 2.4 (L?> weak law of large numbers). Consider a sequence of uncorrelated random variables X : Q) —
RN such that EX,, = p and Var(X,) = o?. Defining the sum S, = Y"_| X; and the empirical mean X, = %, we
have limy, X,, = y in L? and in probability.

Proof. This follows from the fact that Var X, = E(X,, — u)*> = %]E(Sn —np)? = ‘%2. Convergence in L? im-
plies convergence in probability, and hence the result holds. O

Example 2.5 (Convergence in LF doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a forall 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Zi'(:l i, and define integer intervals I, = {S;_; +1,...,5;}. Clearly, the intervals (I; : k € N)
partition the natural numbers, and each n € IN lies in some I}, such that n = S;_1 + i for i € [k]. There-
fore, for each n € IN, we define indicator random variable X, : Q — {0,1} such that

i1
3
For any w € [0,1], we have X, (w) = 1 for infinitely many values since there exist infinitely many (i, k)

pairs such that (1;1) <w< %, and hence limsup, X, (w) = 1 and hence lim, X, (w) # 0. However,
lim, X, (w) = 01in L?, since

E |Xu]P = A{Xn(w) #0} = %



3 L! convergence theorems

Theorem 3.1 (Monotone Convergence Theorem). Consider a probability space (Q),F,P) and a non-decreasing
non-negative random sequence X : QO — RY such that X,, € L! for all n € N. Let Xoo(w) = sup,, Xu(w) for all
w € ), then
EXe =supEX,,.
n

Proof. From the monotonicity of sequence X and the monotonicity of expectation, we have sup, EX; <
EXe. Leta € (0,1) and Y : QO — R a non-negative simple random variable such that Y < X,. We define

E,2{weQ: Xy(w)=>aY}eT.

From the monotonicity of sequence X, the sequence of events (E, € F : n € IN) are monotonically non-
decreasing such that U,cNE; = Q. It follows that

aE[Y1g,] <E[X,1E,] < EX,.

We will use the fact that lim, E[Y1g,| = E[Y], then aEY < sup, EX;,. Taking supremum over all « € (0,1)
and all simple functions Y < X, we get EXo < sup, EX;,. O

Theorem 3.2 (Fatou’s Lemma). Consider a probability space (QQ,F,P) and a non-negative random sequence X :
Q — RY. Let Xoo(w) £ liminf, X, (w) for all w € Q, then

EXo < 1imi{11fIEXn.

Proof. We define Y, = infy~,, Xy for all n € IN. It follows that Y : () — ]R]I;I is a non-negative non-decreasing
sequence of random variables, and X« = sup,, Y;; = lim;, Y;;. By Motonone convergence theorem applies to
Y, we have EX« = sup,, EY). The result follows from the monotonicity of expectation, and the fact that
Y, < Xi forall k > n, to get EY), <infy>, EXj. O

Theorem 3.3 (Dominated Convergence Theorem). Let X : Q — RN be a random sequence defined on a proba-
bility space (Q,F, P). Iflim, X, = Xeo a.5. and there exists a Y : Q) — Ry such that Y € LY(F) and |X,| <Y a.s.,
then ]EXOQ - ].imn lEXn.

Proof. From the hypothesis, we have Y + X,, > 0 a.s. and Y — X, > 0 a.s. Therefore, from Fatou’s Lemma
and linearity of expectation, we have

EY + EXe < minfE(Y + X,,) = EY + liminfEX,, EY —EX, <lminfE(Y — X,;) = EY — limsupEX,,.
n n n n

Therefore, we have limsup EX; < EXe < liminfIEX},, and the result follows. O

4 Uniform integrability

Definition 4.1 (uniform integrability). A family (X; € L' : t € T) of random variables indexed by T is
uniformly integrable if
lim SUTEIEHXH 1{‘X{‘>ﬂ}] =0.
€

n—>oot

Example 4.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X; € L!
and lim, E[|X1| 1 |x,>4}] = 0. This is due to the fact that (X, £ X| 1y x|<n} : m € N) is a sequence of
increasing random variables lim, X;,, = X. From monotone convergence theorem, we get lim, [E | X,,| =
Elim, | X}, |. Therefore,

1i;n]EHX| 1(x>a)) = E|X] —1iL17n]E[|X| L{jx|<a}) = 0.



Proposition 4.3. Let X € LP and (A, :n € N) C F be a sequence of events such that lim, P(A,) = 0, then

lim X[ 14, = 0.

Example 4.4 (Dominated family). If there exists Y € L! such that sup,_1 | X;| < |Y/|, then the family of
random variables (X; : t € T) is uniformly integrable. This is due to the fact that

StuIT>]E[|X| Lyxi>ap] SE[Y|1{y|>al-
&

Example 4.5 (Finite family). then the family of random variables (X; : t € T) is uniformly integrable.
This is due to the fact that sup, ;| X¢| < Ly | Xi| € L1

Theorem 4.6 (Convergence in probability with uniform integrability implies in L”). Consider a sequence
of random variables (X, : n € N) C LP for p > 1. Then the following are equivalent.

(a) The sequence (X, : n € N) converges in L, i.e. lim, E |X, — X|V = 0.

(b) The sequence (X, : n € N) is Cauchy in L, i.e. limy, n—00 E | Xy — Xiu|P = 0.

(c) lim, X, = X in probability and the sequence (|X,|" : n € N) is uniformly integrable.

Proof. For a random sequence (X, : n € IN) in L?, we will show that (a) = (b) = (¢) = (a).

(a) = (b) : We assume the sequence (X, : n € IN) converges in LP. Then, from Minkowski’s inequality, we can
write

1 1 1
(I [ Xy = Xou[") 7 < (B [Xy = X|P)7 4 (B | Xy — X|P)7.

(b) = (c): We assume that the sequence (X, : n € IN) is Cauchy in L?, i.e. limy; n— 00 E | Xy — Xiu|P = 0. Let € >0,
then for each n € IN, there exists N, such that for all n,m > N,

E|X, — Xul? <

N ™

Let A; = {w € A:|X;| > a}. Then, using triangle inequality and the fact that 1,4, <1, from the linearity
and monotonicity of expectation, we can write for n > Ne

I

(BLXulP 1, om])7 < (B[ Xn " 14,1)7 + (B[ X0 — Xn, ['])7 < (B[ X [P 1a,])7 +

N ™

Therefore, we can write sup, E[|Xu|" 1{x,>a}] < sup,,<n. E[|Xm|"14,] + §. Since (|Xy|" : n < Ne) is
finite family of random variables in L!, it is uniformly integrable. Therefore, there exists a. € R such

1 1
that sup,, . (B[|Xi|"14,])7 < §. Taking a’ = max{a,ac}, we get sup, (E[|X,|" 1{x,>a}])? <e. Since
the choice of € was arbitrary, it follows that

==

i P —
}gl;osgp(]E[anl 1x,>an])? =0.
The convergence in probability follows from the Markov inequality, i.e.

1
P{|Xn — X" > €} < E[Xy — Xu|"".



: Since the sequence (X, : n € IN) is convergent in probability to a random variable X, there exists a

subsequence (1 : k € N) C N such that lim X, = X a.s. Since (|X,|" : n € N) is a family of uniformly
integrable sequence, by Fatou’s Lemma

E|X|P <liminfE | X, |" < suplE |X,|" < co.
n

Therefore, X € L!, and we define A, (e) = {| X, — X| > €} for any € > 0. From Minkowski’s inequality,
we get

1% =1, < |0 = 010, ey, + [ Xotanco ], + [ XLarc

p

We can check that H (Xn = X)L g o)

< e. Further, since lim,, X;, = X in probability, (A, :n € N) C F
P

=0.

= lim,,

is decreasing sequence of events, and since X,;, X € L!, we have lim,,

Xn]lAn(e) X]lAn(e)

O
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