
Lecture-16: Random Processes

1 Introduction

Recall that the projection operator πt : RT →R maps any T-vector x ∈RT to πt(x) = xt.

Definition 1.1 (Random process). Let (Ω,F, P) be a probability space. For an arbitrary index set T and
state space X ⊆ R, map X : Ω→ XT is called a random process if the projections Xt : Ω→ X defined by
ω 7→ Xt(ω), (πt ◦ X)(ω) are random variables on the given probability space.

Definition 1.2. For each outcome ω ∈ Ω, we have a function X(ω) : T 7→ X called the sample path or the
sample function of the process X.

Remark 1. A random process X defined on probability space (Ω,F, P) with index set T and state space
X⊆R can be thought of as

(a) a map X : Ω× T→ X,

(b) a map X : T→ XΩ, i.e. a collection of random variables Xt : Ω→ X for each time t ∈ T,

(c) a map X : Ω→ XT , i.e. a collection of sample functions X(ω) : T→ X for each random outcome ω ∈Ω.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If
the index set T ⊆R is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = Rn × [0,∞), stochastic process X is a spatio-temporal process.

Example 1.3. We list some examples of each such stochastic process.

i Discrete random sequence: brand switching, discrete time queues, number of people at bank each
day.

ii Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii Discrete random process: counting processes, population sampled at birth-death instants, number
of people in queues.

iv Continuous random process: water level in a dam, waiting time till service in a queue, location of
a mobile node in a network.

1.2 Measurability

For random process X : Ω→ XT , the projections Xt , πt ◦ X are random variables. Therefore, the set of
outcomes At(x), X−1

t (−∞, x] ∈ F for all t ∈ T and x ∈R.
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Definition 1.4. A random map X : Ω→ XT is called F-measurable and hence a random process, if the set
of outcomes At(x) = X−1

t (−∞, x] ∈ F for all t ∈ T and x ∈R.

Definition 1.5. The event space generated by a random process X : Ω→XT defined on a probability space
(Ω,F, P) is given by

σ(X), σ(At(x) : t ∈ T, x ∈R).

Remark 2. Recall that π−1
t (−∞, x] =×s∈T(−∞, xs] where xs = x for s = t and xs = ∞ for all s 6= t. The

F-measurability of process X implies that for any countable set S ⊆ T, we have AS(xS) , ∩s∈S As(xs) ∈ F

for xS ∈ XS. We can construct a x = π−1
S (x) ∈RT such that πs(x) = xs for s ∈ S and πt(x) = ∞ for t /∈ S, and

define
A(x), ∩t∈T At(xt) = ∩s∈S As(xs) = AS(xS) ∈ F.

Recall that A(x) is an event only when {t ∈ T : πt(x) < ∞} is a countable set.

Example 1.6 (Bernoulli sequence). Let index set be N and the sample space be the collection of infinite
bi-variate sequences of successes (S) and failures (F) defined by Ω = {S, F}N. An outcome ω ∈ Ω is an
infinite sequence ω = (ω1,ω2, . . . ) such that ωn = πn(ω) ∈ {S, F} for each n ∈N. We define the random
process X : Ω→ {0,1}N such that Xn(ω) = 1{S}(ωn) = 1{ωn=S}. Hence, we can write the process X as

the collection of random variables X : N→ {0,1}Ω or the collection of sample paths X : Ω→ {0,1}N.
Since each Xn : Ω→ {0,1} is a bi-variate random variable on the probability space (Ω,F, P), the

event space is generated by events En , {ω ∈Ω : Xn(ω) = 1} =
{

ω ∈ {S, F}N : ωn = S
}
∈ F. That is,

σ(X) = σ(En : n ∈N).

Definition 1.7. For a random process X : Ω→ XT defined on the probability space (Ω,F, P), we define a
finite dimensional distribution FXS : RS→ [0,1] for a finite S ⊆ T by

FXS(xS), P(AS(xS)), xS ∈RS.

1.3 Independence

Recall the following definitions given the probability space (Ω,F, P). Events (Ai ∈ F : i ∈ [n]) ∈ F are
independent if P(∩n

i=1 Ai) = ∏n
i=1 P(Ai). A collection of events (At ∈ F : t ∈ T) is independent if (As : s ∈ S)

are independent for all finite S ⊆ T.

Definition 1.8. Event spaces (Gi ⊆ F : i ∈ [n]) are independent if any collection of events G ∈×i∈[n]Gi are
independent. That is,

P(∩n
i=1Gi) =

n

∏
i=1

P(Gi), for all Gi ∈ Gi, i ∈ [n].

Definition 1.9. Random vector X : Ω→Rn is independent if event spaces σ(X1), . . . ,σ(Xn) are independent.
That is, for all x ∈Rn, we have

FX(x) = P(∩n
i=1X−1

i (−∞, xi]) =
n

∏
i=1

P ◦ X−1
i (−∞, xi] =

n

∏
i=1

FXi (xi).

That is, independence of random vector is equivalent to factorization of joint distribution function into
product of individual marginal distribution functions.

Definition 1.10. A collection of event spaces (Gt ⊆ F : t ∈ T) is independent if any finite subcollection
(Gt : t ∈ S) for finite S ⊆ T is independent.
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Definition 1.11. A random process is independent if the collection of event spaces (σ(Xt) : t ∈ T) is inde-
pendent. That is, for all xS ∈RS, we have

FXS(xS) = P(∩s∈S {Xs 6 xs}) = ∏
s∈S

P{Xs 6 xs} = ∏
s∈S

FXs(xs).

That is, independence of a random process is equivalent to factorization of any finite dimensional distribu-
tion function into product of individual marginal distribution functions.

Definition 1.12. Two stochastic processes X : Ω→ XT1 ,Y : Ω→ YT2 are independent, if the corresponding
event spaces σ(X),σ(Y) are independent. That is, for any x ∈ RS1 ,y ∈ RS2 for finite S1 ⊆ T1,S2 ⊆ T2, the
events AS1(x), ∩s∈S1 X−1

s (−∞, xs] and BS2(y), ∩s∈S2Y−1
s (−∞,ys] are independent. That is, the joint finite

dimensional distribution of X and Y factorizes, and

P(AS1(x) ∩ BS2(y)) = P(AS1(x))P(BS2(y)) = FXS1
(x)FYS2

(y), x ∈RS1 ,y ∈RS2 .

1.4 Distribution

To define a measure on a random process, we can either put a measure on sample paths, or equip the
collection of random variables with a joint measure. We are interested in identifying the joint distribution
F : RT → [0,1]. To this end, for any x ∈RTwe need to know

FX(x), P

(⋂
t∈T
{ω ∈Ω : Xt(ω)6 xt}

)
= P(

⋂
t∈T

X−1
t (−∞, xt]) = P(A(x)).

First of all, we don’t know whether A(x) is an event since A(x) ∈ F when x ∈RT such that {t ∈ T : xt < ∞}
is countable. Second, even for a simple independent process with countably infinite T, any function of the
above form would be zero if xt is finite for all t ∈ T. Therefore, we only look at the values of FX(x) for
x ∈ RT where {t ∈ T : xt < ∞} is finite. That is, for any finite set S ⊆ T, we focus on the events AS(xS)
and their probabilities. However, these are precisely the finite dimensional distributions. Set of all finite
dimensional distributions of the stochastic process X : Ω→ XT characterizes its distribution completely.

1.5 Joint moments

Simpler characterizations of a stochastic process X are in terms of its moments. That is, the first moment
such as mean, and the second moment such as correlations and covariance functions.

mX(t), EXt, RX(t, s), EXtXs, CX(t, s), E(Xt −mX(t))(Xs −mX(s)).

Example 1.13 (Bernoulli sequence). For the Bernoulli sequence X defined in Example 1.6 on probabil-
ity space (Ω,F, P), we take the probability of generating events be

P(∩i∈SEi) = p|S|, S ⊆N.

This probability of events implies that finite dimensional distributions factorize and they are identical.
In particular, we have

P(∩s∈S {Xs = xs}) = p∑s∈S xs(1− p)|S|−∑s∈S xs , S ⊆N.

Hence, the random sequence X is independent and identically distributed with P{Xn = 1}= p ∈ (0,1).
For any sequence x ∈ {0,1}N, we have P{X = x}= 0. Let q , (1− p), then the probability of observing
m heads and r tails is given by pmqr. We can easily compute the mean, the auto-correlation, and the
auto-covariance functions for the independent Bernoulli process defined in Example 1.13 as

mX(n) = EXn = p, RX(m,n) = EXmXn = EXmEXn = p2, Cx(m,n) = 0.
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