
Lecture-17: Stopping Times

1 Random Walk

Definition 1.1. Let X : Ω→ XN be an i.i.d. random sequence defined on the probability space (Ω,F, P)
and the state space X = Rd. A random sequence S : Ω→ XZ+ is called a random walk with step-size
sequence X, if S0 , 0 and Sn , ∑n

i=1 Xi for n ∈N.

Remark 1. We can think of Sn as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size Xi at the ith step. From the i.i.d. nature of step-size sequence, we
observe that ESn = nEX1 and CS(n,m) = (n ∧m)Var[X1].

Remark 2. For the process S : Ω→ XN it suffices to look at finite dimensional distributions for finite sets
[n] ⊆N for all n ∈N. If the i.i.d. step-size sequence X has a common density function, then from the
transformation of random vectors, we can find the finite dimensional density

fS1,...,Sn(s1, s2, . . . , sn) = fX1,...,Xn(s1, s2 − s1, . . . , sn − sn−1)det[J(s)] = fX1(s1)
n

∏
i=2

fX1(si − si−1).

Remark 3. If Xn denotes the success of nth experiment, then Sn denotes the number of successes in first
n trials. In particular, Sn ∈ {0, . . . ,n}, i.e. the set of all outcomes is index dependent. Further, Sn > 0
for all n and is a non-decreasing process, since Sn = Sn−1 + Xn. In particular, it is a discrete counting
process.

Example 1.2. Example of discrete counting processes.

i For products manufactured in an assembly line, Sn indicates the number of defective products
in the first n manufactured.

ii At a fork on the road, Sn indicates the number of vehicles that turned left for first n vehicles
that arrived at the fork.

Remark 4. For a one-dimensional random walk S : Ω→ZN
+ with i.i.d. step size sequence X : Ω→{0,1}N

such that P{X1 = 1}= p, the distribution for the random walk at nth step Sn is Binomial (n, p). That is,
P{Sn = k} = (n

k)pk(1− p)n−k, k ∈ {0, . . . ,n} .

2 Stopping Times

Definition 2.1. Let (Ω,F, P) be a probability space, then a collection of event spaces denoted F• = (Ft ⊆
F : t ∈ T) is called a filtration on this probability space for an ordered index set T, if Fs ⊆ Ft for all s 6 t.

Definition 2.2. For a random process X : Ω → XT defined on probability space (Ω,F, P) with state
spapce X ⊆ R and ordered index set T, we can find the event space generated by all random variables
until time t as σ(Xs, s 6 t). The natural filtration associated with the random process X is given by
F• = (Ft : t ∈ T) where Ft , σ(Xs, s 6 t).

Example 2.3. For a random sequence X : Ω → XN, the natural filtration is a sequence F• =
(Fn : n ∈ N) of event spaces Fn , σ(X1, . . . , Xn) for all n ∈ N. For the random walk S with
step size sequence X, the natural filtration is identical to that of the step size sequence. That is,
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σ(S1, . . . ,Sn) = σ(X1, . . . , Xn). This follows from the fact that there is a bijection between (X1, . . . , Xn)

and (S1, . . . ,Sn), where Sj = ∑
j
i=1 Xi, j ∈ [n] and Xj = Sj − Sj−1, j ∈ [n].

If the random sequence X is independent, then the random sequence (Xn+j : j ∈N) is indepen-
dent of the event space σ(X1, . . . , Xn).

Definition 2.4. For an ordered index set T, a random variable τ : Ω→ T is called a stopping time with
respect to a filtration F• if

(a) the event τ−1(−∞, t] ∈ Ft for all t ∈ T, and

(b) the random variable τ is finite almost surely, i.e. P{τ < ∞} = 1.

Consider the natural filtration F• for a random process X : Ω→ XT , defined by Ft , σ(Xs, s 6 t)
for all t ∈ T. We can consider the ordered index set T as a time sequence. Intuitively, if we observe
the process X sequentially, then the event {τ 6 t} can be completely determined by the observation
(Xs, s 6 t) until time t. The intuition behind a stopping time is that it’s realization is determined by the
past and present events but not by future events. That is, given the history of the process until time t,
we can tell whether the stopping time is t or not. In particular, E[1{τ6t}

∣∣ Ft] is either one or zero.

Example 2.5. while traveling on the bus, the random variable measuring “time until bus crosses
next stop after Majestic” is a stopping time as it’s value is determined by events before it happens.
On the other hand “time until bus crosses the stop before Majestic” would not be a stopping time
in the same context. This is because we have to cross this stop, reach Majestic and then realize we
have crossed that point.

Theorem 2.6. For a random sequence X : Ω→XZ+ , a discrete random variable τ : Ω→N∪{∞} is a stopping
time with respect to this random sequence X iff

(i) the event {τ = n} ∈ σ(X1, . . . , Xn) for all n ∈N, and

(ii) the stopping time is finite almost surely, i.e. P{τ < ∞} = 1.

Proof. From Definition 2.4, we have {τ = n} = {τ 6 n} \ {τ 6 n− 1} ∈ Fn. Conversely, from the theo-
rem hypothesis, it follows that {τ 6 n} = ∪n

m=1 {τ = m} ∈ Fn.

Example 2.7. Consider a random sequence X : Ω→ XN, the natural filtration F•, and a measurable
set A ∈ B(X). The first hitting time τA

X : Ω→N∪ {∞} for the sequence X to hit set A is defined by

τA
X , inf{n ∈N : Xn ∈ A} .

If τA
X is almost surely finite, then τA

X is a stopping time. This follows from the fact that
{

τA
X = n

}
=

∩n−1
k=1 {Xk /∈ A} ∩ {Xn ∈ A} ∈ Fn.

2.1 Properties of stopping time

Lemma 2.8. Let τ1,τ2 be two stopping times with respect to filtration (Ft : t ∈ T). Then the following hold true.

i min{τ1,τ2} is a stopping time.

ii If T is separable, then τ1 + τ2 is a stopping time.

Proof. Let F• = (Ft : t ∈ T) be a filtration, and τ1,τ2 associated stopping times.

i Result follows since the event {min{τ1,τ2} > t} = {τ1 > t} ∩ {τ2 > t} ∈ Ft.
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ii It suffices to show that the event {τ1 + τ2 6 t} ∈ Ft for T = R+. To this end, we observe that

{τ1 + τ2 6 t} =
⋃

s∈Q+ : s6t
{τ1 6 t− s,τ2 6 s} ∈ Ft.

Example 2.9. Let S : Ω → ZN
+ denote the random walk associated with the i.i.d. Bernoulli step

size sequence X : Ω → {0,1}N where EX1 = p. For the set A = {1}, we have τA
X = τA

S =

inf{n ∈N : Sn = 1}. Further, we have P
{

τA
X = n

}
= (1 − p)n−1 p, and therefore P

{
τA

X < ∞
}
=

∑n∈N P
{

τA
X = n

}
= 1. That is, τ

{1}
X is a stopping time.

Lemma 2.10 (Wald’s Lemma). Consider a random walk S : Ω→ RZ+ with i.i.d. step-sizes X : Ω→ RN

having finite E |X1|. Let τ be a finite mean stopping time with respect to this random walk. Then,

E [Sτ ] = E [X1]E [τ] .

Example 2.11 (Incorrect Proof). At first glance, this looks like an easy statement to prove since X
is an i.i.d. sequence. Using dominated convergence theorem and almost sure finiteness of stopping
time τ, we can write

ESτ = E[ ∑
n∈N

Sn1{τ=n}] = ∑
n∈N

E[Sn1{τ=n}].

If τ was a random time independent of σ(Sn), then we can write from monotone convergence
theorem

ESτ = EX1E ∑
n∈N

n1{τ=n} = EX1Eτ.

However, we can’t proceed any further when τ is stopping time, since Sn and {τ = n} are not
independent events.

Example 2.12 (When τ is not a stopping time). Consider a random walk S associated with an i.i.d.
step size sequence X where EX1 = p, and the associated natural filtration F•. we define a random
time τ : Ω→N∪ {∞}, such that

τ , inf{n ∈N : Sn+1 = 1} .

We first observe that τ is not a stopping time, since the event {τ = n} =
{S1 = · · · = Sn = 0,Sn+1 = 1} ∈ Fn+1 and this event doesn’t belong to Fn. Second, we observe that
Sτ = 0,τ > 1,EX1 = p and hence ESτ 6= EτEX1.

Proof. From the independence of step sizes, it follows that Xn is independent of σ(X0, X1, . . . , Xn−1).
Since τ is a stopping time with respect to random walk S, we observe that {τ > n} = {τ > n− 1} ∈
σ(X0, X1, . . . , Xn−1), and hence it follows that random variable Xn and 1{τ>n} are independent and
E[Xn1{τ>n}] = EXnE1{τ>n}. Therefore,

E
τ

∑
n=1

Xn = E ∑
n∈N

Xn1{τ>n} = ∑
n∈N

EXnE
[
1{τ>n}

]
= EX1E

[
∑

n∈N

1{τ>n}

]
= E[X1]E[τ].

We exchanged limit and expectation in the above step, which is not always allowed. We were able to
do it by the application of dominated convergence theorem.
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Example 2.13. For an integer random walk S : Ω → ZN with i.i.d. steps X : Ω → ZN, consider
the hitting time τ

{i}
S by random walk S to set A = {i}. The mean of the stopping time τ

{k}
S ,

min{n ∈N : Sn = k} is given by Eτ
{k}
S = k/EX1. This follows from the Wald’s Lemma and the fact

that Sτi = i.

Theorem 2.14 (Strong Independence Property). Let X : Ω→ XN be an independent random sequence with
natural filtration F•, and τ : Ω→N a stopping time adapted to the natural filtration of process X. Then, the
random collection of random variables (Xτ+n : n ∈N) is independent of the random past (Xn : n 6 τ).

Example 2.15 (When τ is not a stopping time). Consider a random walk S associated with an i.i.d.
step size sequence X where EX1 = p, and the associated natural filtration F•. we define a random
time τ : Ω→N ∪ {∞}, such that τ , inf{n ∈N : Sn+1 = 1} . Recall that τ is not a stopping time.
Further, we observe that S1 = · · · = Sτ = 0, and Sτ+1 = 1. In particular, Sτ+1 = 1− Sτ and hence
σ(S1, . . . ,Sτ) and σ(Sτ+1) are not independent.

Proof. Since τ is an almost surely finite discrete random variable that takes values in N, we have ex-
ception set E = {τ = ∞} and the complement Ec = ∪n∈N {τ = n}. For each n ∈N, the event {τ = n} ∈
Fn = σ(X1, . . . , Xn), and the collection (Xn+j : j ∈N) is independent of (Xj : j ∈ [n]). Consider an event
F ∈ σ(X1, . . . , Xτ) and another event Gτ ∈ σ(Xτ+1, . . . ). Then, we have

E[1F∩{τ=n}1Gτ

∣∣ Fn] = 1{τ=n}1FE[1Gn ]

Since ∑n∈N1{τ=n} = 1Ec , we have from the linearity and tower property of expectation

E[1F∩Gτ
] =E

[
1F1Gτ ∑

n∈N

1{τ=n}

]
=E

[
∑

n∈N

E[1F∩{τ=n}1Gτ

∣∣ Fn]

]
=E[1F ∑

n∈N

1{τ=n}E[1Gn ]] =E[1F]E[1Gτ
].

Therefore, the result follows.

Example 2.16. Let S : Ω→ZN
+ denote the random walk associated with the i.i.d. Bernoulli step size

sequence X : Ω→ {0,1}N where EX1 = p. We observe that the kth hitting time to {1} by step size
sequence X is the first hitting time to {k} by random walk S. That is,

τ
{k}
S = inf{n ∈N : Sn = k} = τ

{k−1}
S + inf

{
n ∈N : S

τ
{k−1}
S +n

− S
τ
{k−1}
S

= 1
}

.

We recall that τ
{1}
S is finite almost surely, and we will show that τ

{k}
S is finite almost surely for

all k ∈N by induction. By induction hypothesis, τ
{k−1}
S is finite almost surely. Then S

τ
{k−1}
S +n

−
S

τ
{k−1}
S

= ∑n
j=1 X

τ
{k−1}
S +j

is the sum of n i.i.d. Bernoulli random variables, and hence has distribution

identical to Sn. Further, since X is i.i.d. and τ
(k−1)
S is a stopping time, the collection (X

τ
{k−1}
S +j

: j∈N)

is independent of the past (Xj : j 6 τ
{k−1}
S ). This implies that τ

{k}
S = τ

{k−1}
S + τ{1}, where τ{1} has

the identical distribution to τ
{1}
X and is independent of τ

{1}
X . Since the sum of almost surely finite

random variables is finite, it follows that τ
{k}
S is almost surely finite. Further, we can write

Eτ
{k}
S = Eτ

{k−1}
S + Eτ

{1}
S = kEτ

{1}
S =

k
EX1

.
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