
Lecture-18: Tractable Random Processes

1 Examples of Tractable Stochastic Processes

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional
distribution. However, we have listed few analytically tractable examples below, where we can completely
characterize the stochastic process. We will consider the probability space (Ω,F, P), and a random process
X : Ω→ XT for index set T and state space X⊆R.

1.1 Independent and identically distributed (i.i.d. ) processes

Definition 1.1 (i.i.d. process). A random process X : Ω→ XT is independent and identically distributed
(i.i.d.) with the common distribution F : R→ [0,1], if for any finite S ⊆ T and a real vector xS ∈RS, we can
write the finite dimensional distribution for this process as

FXS(xS) = P (∩s∈S {Xs(ω)6 xs}) = ∏
s∈S

F(xs).

Remark 1. It’s easy to verify that all cross moments are independent of time indices. That is, if 0 ∈ T then
Xt = X0 in distribution, and we have

mX(t) = EX0, RX(t, s) = (EX2
0)1{t=s} + m2

X1{t 6=s} CX(t, s) = Var(X0)1{t=s}.

Example 1.2. For an i.i.d. Bernoulli process X : Ω→ {0,1}N with EX1 = p, the common distribution is
F(x) = 1{x>1} + (1− p)1[0,1(x). Therefore, defining n(xS), ∑s∈S1[0,1)(xs), we get

FXS(xS) =

{
(1− p)n(xS), min{xs : s ∈ S}> 0,
0, min{xs : s ∈ S} < 0.

1.2 Stationary processes

Definition 1.3 (Stationary process). We consider the index set T ⊆ R. A stochastic process X : Ω→ XT is
stationary if all finite dimensional distributions are shift invariant. That is, for any finite S ⊆ T and t ∈ T,
we have

FXS(xS) = P(∩s∈S {Xs(ω)6 xs}) = P(∩s∈S {Xt+s(ω)6 xs}) = FXt+S(xS).

Remark 2. That is, for any finite n ∈N and t ∈ T, the random vectors (Xs1 , . . . , Xsn) and (Xt+s1 , . . . , Xt+sn)
have the identical joint distribution for all s1 6 . . . 6 sn.

Remark 3. In particular, all the cross moments are shift invariant when they exist. For any finite n ∈N

S , {s1, . . . , sn} ⊆ T, we can take shift s1 and hence for S′ , {0, s2 − s1, . . . , sn − s1} ⊆ T, the random vectors
XS and XS′ have the identical joint distribution. Therefore, we have E∏i∈n Xsi = E[X0 ∏n−1

i=2 Xsi−s1 ].

Lemma 1.4. Any i.i.d. process with index set T ⊆R is stationary.
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Proof. Let X : Ω → XT be an i.i.d. random process, where T ⊆ R. Then, for any finite index subset
S ⊆ T, t ∈ T and xS ∈RS, we can write

FXS(xS) = P(∩s∈S {Xs 6 xs}) = ∏
s∈S

P{Xs 6 xs}= ∏
s∈S

P{Xs+t 6 xs} = P(∩s∈S {Xt+s 6 xs}) = FXt+S(xS).

First equality follows from the definition, the second from the independence of process X, the third
from the identical distribution for the process X. In particular, we have shown that process X is also
stationary.

Definition 1.5. Two processes X : Ω→ XT and Y : Ω→ YT are jointly stationary if processes X and Y are
stationary, and the joint finite dimensional distributions are shift invariant.

Definition 1.6. A second order stochastic process X has finite auto-correlation RX(t, t) < ∞ for all indices
t ∈ T.

Remark 4. For a second order stochastic process X, we have Xt ∈ L2(F) for all times t ∈ T. This implies
that Xt ∈ L1(F) for all t ∈ T, and hence mX(t) = EXt < ∞ for all t ∈ T. Further, from the Cauchy-Schwartz
inequality, we obtain that

RX(s, t) = EXsXt 6
√

EX2
s EX2

t =
√

RX(s, s)RX(t, t) < ∞.

Therefore, the mean, the auto-correlation, and the auto-covariance functions are well defined and finite.
Remark 5. For a stationary process X, we have Xt = X0 and (Xt, Xs) = (Xt−s, X0) in distribution. Therefore,
for a second order stationary process X, we have

mX = EX0, RX(t, s) = EXt−sX0 = RX(t− s,0), CX(t, s) = RX(t− s,0)−m2
X = CX(t− s,0).

Definition 1.7. A random process X is wide sense stationary if

1. mX(t) = mX(t + s) for all s, t ∈ T, and

2. RX(t, s) = Rx(t + u, s + u) for all s, t,u ∈ T.

Remark 6. It follows that a second order stationary stochastic process X, is wide sense stationary. A second
order wide sense stationary process is not necessarily stationary.

Definition 1.8. Two processes X : Ω→ XT and Y : Ω→ YT are jointly wide sense stationary, if processes X
and Y are wide sense stationary, and RX,Y(t, s) = RX,Y(t + u, s + u), for all s, t,u ∈ T.

Example 1.9 (Gaussian process). Let X : Ω→ RR be a zero-mean continuous-time Gaussian process,
defined by its finite dimensional distributions. In particular, for any finite S⊂R, column vector xS ∈RS,
and the covariance matrix CXS , EXSXT

S , the finite-dimensional density is given by

fXS(xS) =
1

(2π)|S|/2
√

det(CXS)
exp

(
−1

2
xT

S C−1
XS

xS

)
.

Theorem 1.10. A wide sense stationary Gaussian process is stationary.

Proof. For Gaussian random processes, first and the second moment suffice to get any finite dimen-
sional distribution. Let X be a wide sense stationary Gaussian process and let S⊆R be finite. From the
wide sense stationarity of X, we have EXS = mX [1, . . . ,1]T and

CXS(s,u) = E(Xs −mX)(Xu −mX) = CX(s− u), for all s,u ∈ S.

This means that CXS = CXt+S , and the result follows.
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1.3 Markov processes

Definition 1.11. A stochastic process X : Ω→ XT for state space X⊆R and ordered index set T is Markov
if conditioned on the present state, future is independent of the past. We denote the history of the process
until time t as Ft = σ(Xs, s 6 t). That is, for any two indices u > t, we have

P({Xu 6 xu}
∣∣ Ft) = P({Xu 6 xu}

∣∣ σ(Xt)).

Remark 7. For an event E ∈ F and a sub-event space G⊆ F, the conditional probability P(E
∣∣ G) = E[1E

∣∣ G].
Therefore, to show Markov property, it suffices to show that

E[1F1{Xu6xu}] = E[1FE[1{Xu6xu}
∣∣ σ(Xt)]], xu ∈R,u > t, F ∈ Ft.

Remark 8. We next re-write the Markov property more explicitly for the process X. For all x,y ∈ X, finite set
S ⊆ T such that maxS < t < u, and HS = ∩s∈S {Xs 6 xs} ∈ Ft, we have

P({Xu 6 y}
∣∣ HS ∩ {Xt 6 x}) = P({Xu 6 y}

∣∣ {Xt 6 x}).

Remark 9. When the state space X is countable, we can write HS = ∩s∈S {Xs = xs} and the Markov property
can be written as

P({Xu = y}
∣∣ HS ∩ {Xt = x}) = P({Xu = xu}

∣∣ {Xt = x}).

Remark 10. In addition, when the index set is countable, i.e. T = Z+, then we can take past as S =
{0, . . . ,n− 1}, present as instant n, and the future as n + 1. Then, the Markov property can be written
as

P({Xn+1 = y}
∣∣ Hn−1 ∩ {Xn = x}) = P({Xn+1 = y}

∣∣ {Xn = x}),

for all n ∈Z+, x,y ∈ X.

We will study this process in detail in coming lectures.

Lemma 1.12. Any independent process X : Ω→ XT with index set T ⊆R is Markov.

Proof. Let F• be the natural filtration of the independent process X. Then for any u > t, the random
variable Xu is independent of Ft, and hence P({Xu 6 xu}

∣∣ Ft) = P({Xu 6 xu}
∣∣ σ(Xt)) = FXu(xu).

Proof. Alternatively, we observe that for any F ∈ Ft and u > t, the events F and {Xu 6 xu} are indepen-
dent. Therefore, E[1FE[1{Xu6xu}

∣∣ σ(Xt)]] = E[1F]E1{Xu6xu} = E[1F1{Xu6xu}].

Lemma 1.13. For an independent step size sequence X : Ω→ XN, the associated random walk S : Ω→ XN is
Markov.

Proof. Let F• be the natural filtration of the independent process X. Then for any m > n, the random
variable Xm is independent of Fn. Therefore, the difference Sm − Sn is independent of Fn, and Sn
is Fn measurable. We can write Sm = Sn + Sm − Sn, and let the distribution of Sm − Sn be G, then
E
[
1{Sm−Sn6s−Sn}

∣∣ Fn

]
= G(s− Sn) = E

[
1{Sm−Sn6s−Sn}

∣∣ σ(Sn)
]

.

Proof. We can show this for countable state space X such that Ω = ∪x∈X {Sn = x}. From the linearity of
conditional expectation and dominated convergence theorem, we have

E[1{Sm6s}
∣∣ Fn] = ∑

x∈X
E[1{Sm−Sn6s−x}1{Sn=x}

∣∣ Fn] = ∑
x∈X

E[1{Sm−Sn6s−x}]1{Sn=x}

= ∑
x∈X

E[1{Sm−Sn6s−x}1{Sn=x}
∣∣ σ(Sn)] = E[1{Sm6s}

∣∣ σ(Sn)].
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1.4 Lévy processes

A right continuous with left limits stochastic process X : Ω→ RR+ with X0 = 0 almost surely, is a Lévy
process if the following conditions hold.

(L1) The increments are independent. For any instants 0 6 t1 < t2 < · · · < tn < ∞, the random variables
Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are independent.

(L2) The increments are stationary. For any instants 0 6 t1 < t2 < · · · < tn < ∞ and time-difference s > 0,
the random vectors (Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1) and (Xs+t2 −Xs+t1 , Xs+t3 −Xs+t2 , . . . , Xs+tn −
Xs+tn−1) are equal in distribution.

(L3) Continuous in probability. For any ε > 0 and t > 0 it holds that limh→0 P{|Xt+h − Xt| > ε} = 0.

Example 1.14. Two examples of Lévy processes are Poisson process and Wiener process. The distribu-
tion of Poisson process at time t is Poisson with rate λt and the distribution of Wiener process at time t
is zero mean Gaussian with variance t.

Example 1.15. For an i.i.d. step size sequence X : Ω→ XN, the associated random walk S : Ω→ XN

defined by Sn , ∑n
i=1 Xi for all n ∈N, has stationary and independent increments. Independence of

increments of random walk S follows from the independence of step size sequence X. Stationarity of
increments of random walk S follows from the identical distribution of step size sequence X.

Further, the random process τS : Ω→NN defined by τ
{k}
S , inf{n ∈N : Sn = k} for all k ∈N, is

a random walk with i.i.d. step size sequence Y : Ω→NN defined by Yk , τ
{k}
S − τ

{k−1}
S for all k ∈N.

Therefore, process τS has stationary and independent increments.

4


	Examples of Tractable Stochastic Processes
	Independent and identically distributed (i.i.d. ) processes
	Stationary processes
	Markov processes
	Lévy processes


