Lecture-19: Discrete Time Markov Chains

1 Introduction

We have seen that i.i.d. sequences are easiest discrete time random processes. However, they don't capture correlation well.

Definition 1.1. For a state space $X \subseteq \mathbb{R}$ and the random sequence $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$, we define the history until time $n \in \mathbb{Z}_{+}$as $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Remark 1. Recall that the event space \mathcal{F}_{n} is generated by the historical events of the form

$$
A_{n}(x)=\cap_{i=1}^{n}\left\{X_{i} \leqslant x_{i}\right\}, \text { where } x \in \mathbb{R}^{n} .
$$

Remark 2. When the state space \mathcal{X} is countable, the event space \mathcal{F}_{n} is generated by the historical events of the form

$$
H_{n}(x)=\cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}, \text { where } x \in X^{n} .
$$

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$is called a discrete time Markov chain (DTMC) if for all positive integers $n \in \mathbb{Z}_{+}$, all states $x, y \in \mathcal{X}$, and any historical event $H_{n-1}=\cap_{m=0}^{n-1}\left\{X_{m}=x_{m}\right\} \in \mathcal{F}_{n}$ for $\left(x_{0}, \ldots, x_{n-1}\right) \in X^{n}$, the process X satisfies the Markov property

$$
P\left(\left\{X_{n+1}=y\right\} \mid H_{n-1} \cap\left\{X_{n}=x\right\}\right)=P\left(\left\{X_{n+1}=y\right\} \mid\left\{X_{n}=x\right\}\right)
$$

Remark 3. The above definition is equivalent to $P\left(\left\{X_{n+1} \leqslant x\right\} \mid \mathcal{F}_{n}\right)=P\left(\left\{X_{n+1} \leqslant x\right\} \mid \sigma\left(X_{n}\right)\right)$, for discrete time discrete state space Markov chain, since $\mathcal{F}_{n}=\sigma\left(H_{n}(x): x \in X^{n}\right)$ and $\sigma\left(X_{n}\right)=\sigma\left(\left\{X_{n}=x\right\}, x \in \mathcal{X}\right)$.

Definition 1.3. The probability of a discrete time Markov chain X being in state $y \in X$ at time $n+1$ from a state $x \in X$ at time n, is determined by the transition probability denoted by

$$
p_{x y}(n) \triangleq P\left(\left\{X_{n+1}=y\right\} \mid\left\{X_{n}=x\right\}\right)
$$

The transition probability matrix at time n is denoted by $P(n) \in[0,1]^{X \times X}$, such that $P_{x y}(n)=p_{x y}(n)$.
Remark 4. We observe that each row $P_{x}(n)=\left(p_{x y}(n): y \in X\right)$ is the conditional distribution of X_{n+1} given $X_{n}=x$.

Theorem 1.4 (Random walk). For a random walk $S: \Omega \rightarrow X^{\mathbb{N}}$ with independent step-size sequence $X: \Omega \rightarrow$ $x^{\mathbb{N}}$, the following are true.
i_{-}The first two moments are $\mathbb{E} S_{n}=\sum_{i=1}^{n} \mathbb{E} X_{i}$ and $\operatorname{Var}\left[S_{n}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]$.
ii_ Random walk is non-stationary with independent increments. The disjoint increments are stationary if the step-size sequence X is identically distributed.
iii_ Random walk is a Markov sequence for countable state space X.
Proof. Results follow from the independence of the step-size sequence X.
i_ Follows from the linearity of expectation and independence of step sizes.
ii_ Since the mean is time dependent, random walk is non-stationary process. Independence of increments follows from the independence of step sizes. That is, since $\mathcal{F}_{n}=\sigma\left(S_{0}, S_{1}, \ldots, S_{n}\right)=$ $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)$ and the collection $\left(X_{n+1}, \ldots, X_{m}\right)$ is independent of $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)$ for all $m>$ n. Since $S_{m}-S_{n}=X_{n+1}+\cdots+X_{m} \in \sigma\left(X_{n+1}, \ldots, X_{m}\right)$, we have the independent increments. When the step-sizes are also identically distributed, the joint distributions of $\left(X_{1}, \ldots, X_{m-n}\right)$ and $\left(X_{n+1}, \ldots, X_{m}\right)$ are identical. This implies the stationarity of increments for i.i.d. step-sizes.
iii_ For the countable state space X, an given the historical event $H_{n-1}(s) \triangleq \cap_{k=1}^{n-1}\left\{S_{k}=s_{k}\right\}$ and the current state $\left\{S_{n}=s_{n}\right\}$, we can write the conditional probability

$$
\begin{aligned}
P\left(\left\{S_{n+1}=s_{n+1}\right\} \mid H_{n-1}(s) \cap\left\{S_{n}=s_{n}\right\}\right) & =P\left(\left\{X_{n+1}=s_{n+1}-S_{n}\right\} \mid H_{n-1}(s) \cap\left\{S_{n}=s_{n}\right\}\right) \\
& =P\left(\left\{S_{n+1}=s_{n+1}\right\} \mid\left\{S_{n}=s_{n}\right\}\right)=P\left\{X_{n+1}=s_{n+1}-s_{n}\right\}
\end{aligned}
$$

The equality in the second line follows from the independence of the step-size sequence. In particular, from the independence of X_{n+1} from the collection $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)=\sigma\left(S_{0}, S_{1}, \ldots, S_{n}\right)$.

Definition 1.5. For all states $x, y \in X$, a matrix $A \in \mathbb{R}_{+}^{X \times X}$ with non-negative entries is called sub-stochastic if the row-sum $\sum_{y \in X} a_{x y} \leqslant 1$ for all rows $x \in \mathcal{X}$. If the above property holds with equality for all rows, then it is called a stochastic matrix. If matrices A and A^{T} are both stochastic, then the matrix A is called doubly stochastic.

Remark 5. We make the following observations for the stochastic matrices.
i_ Every probability transition matrix $P(n)$ is a stochastic matrix.
ii_ All the entries of a sub-stochastic matrix lie in $[0,1]$.
iii_ Each row of the stochastic matrix $A \in \mathbb{R}_{+}^{X \times X}$ is probability mass function over the state space X.
iv_ Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by taking $\mathbf{1}^{T}=\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]$ to be an all-one vector of length $|X|$. Then we see that $A \mathbf{1}=\mathbf{1}$, since

$$
(A \mathbf{1})_{x}=\sum_{y \in X} a_{x y} \mathbf{1}_{y}=\sum_{y \in X} a_{x y}=\mathbf{1}_{x}, \text { for each } x \in X .
$$

v_ Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows from the fact that finite stochastic matrices A and A^{T} have a common right eigenvector 1 . It follows that A has a left eigenvector $\mathbf{1}^{T}$.
vi_ For a probability transition matrix $P(n)$, we have $\sum_{y \in x} f(y) p_{x y}(n)=\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}=x\right]$.

2 Homogeneous Markov chain

In general, not much can be said about Markov chains with index dependent transition probabilities. Hence, we consider the simpler case where the transition probabilities $p_{x y}(n)=p_{x y}$ are independent of the index.

Definition 2.1. A DTMC with the probability transition matrix $P(n)$ that is independent of the index, is called homogeneous.

Example 2.2 (Integer random walk). For a one-dimensional integer valued random walk $S: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ with i.i.d. unit step size sequence $X: \Omega \rightarrow\{-1,1\}^{\mathbb{N}}$ such that $P\left\{X_{1}=1\right\}=p$, the following are true.
i. The transition operator $P \in[0,1]^{\mathbb{Z}_{+} \times \mathbb{Z}_{+}}$is given by the entries

$$
p_{x y}=p 1_{\{y=x+1\}}+(1-p) 1_{\{y=x-1\}} .
$$

ii- Number of positive steps after n steps is $\operatorname{Binomial}(n, p)$.
iii. $P\left\{S_{n}=k\right\}=\binom{n}{(n+k) / 2} p^{(n+k) / 2} q^{(n-k) / 2}$ for $n+k$ even, and 0 otherwise.

Definition 2.3. Consider a homogeneous Markov chain $X: \Omega \rightarrow X^{Z_{+}}$with countable state space X and transition matrix P. We would respectively denote the conditional probability of events and conditional expectation of random variables, conditioned on the event $\left\{X_{0}=x\right\}$, by

$$
P_{x}(A) \triangleq P\left(A \mid\left\{X_{0}=x\right\}\right), \quad \mathbb{E}_{x}[Y] \triangleq \mathbb{E}\left[Y \mid\left\{X_{0}=x\right\}\right]
$$

Example 2.4 (Sequence of experiments). Consider a random sequence of experiments, where the success of nth outcome is indicated by X_{n}. That is, $X: \Omega \rightarrow\{0,1\}^{\mathbb{Z}_{+}}$is a random sequence of outcomes of experiments.

Let $p, q \in[0,1]$. Given the outcome was 0 , the probability of next outcome being 0 is $1-p$. Similarly, given the outcome was 1 , the probability of next outcome being 1 is $1-q$. We can see that X is homogeneous Markov chain, with probability transition matrix

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] .
$$

We denote the conditional distribution of X_{n+1} given $\left\{X_{0}=0\right\}$ by v_{n+1}, and the conditional distribution of X_{n+1} given $\left\{X_{0}=1\right\}$ by μ_{n+1}. That is,

$$
\begin{aligned}
v_{n} & =\left[\begin{array}{ll}
P_{0}\left(\left\{X_{n}=0\right\}\right) & P_{0}\left(\left\{X_{n}=1\right\}\right)
\end{array}\right], \\
\mu_{n} & =\left[\begin{array}{ll}
P_{1}\left(\left\{X_{n}=0\right\}\right) & P_{1}\left(\left\{X_{n}=1\right\}\right)
\end{array}\right] .
\end{aligned}
$$

Let π_{0} be the initial distribution on the experiment outcome, and π_{n} be the distribution of the experiment outcome at time n. Then, we can write

$$
\pi_{n}(0) \triangleq P\left\{X_{n}=0\right\}=P_{0}\left(\left\{X_{n}=0\right\}\right) \pi_{0}(0)+P_{1}\left(\left\{X_{n}=0\right\}\right) \pi_{0}(1)=v_{n}(0) \pi_{0}(0)+\mu_{n}(0) \pi_{0}(1) .
$$

Similarly, we can write $\pi_{n}(1)=v_{n}(1) \pi_{0}(0)+\mu_{n}(1) \pi_{0}(1)$. That is, we can write

$$
\pi_{n} \triangleq\left[\begin{array}{ll}
\pi_{n}(0) & \pi_{n}(1)
\end{array}\right]=\left[\begin{array}{ll}
\pi_{0}(0) & \pi_{0}(1)
\end{array}\right]\left[\begin{array}{ll}
v_{n}(0) & v_{n}(1) \\
\mu_{n}(0) & \mu_{n}(1)
\end{array}\right]=\pi_{0}\left[\begin{array}{l}
v_{n} \\
\mu_{n}
\end{array}\right] .
$$

That is to compute the unconditional distribution of X_{n}, given initial distribution π_{0}, we need to compute conditional distributions v_{n} and μ_{n}. We can see that

$$
\begin{array}{ll}
\nu_{1}=\left[\begin{array}{ll}
1-p & p
\end{array}\right], & v_{2}=\left[\begin{array}{ll}
(1-p)^{2}+p q & (1-p) p+p(1-q)
\end{array}\right], \\
\mu_{1}=\left[\begin{array}{ll}
q & 1-q
\end{array}\right], & \mu_{2}=\left[\begin{array}{ll}
q(1-p)+(1-q) q & (1-q)^{2}+q p
\end{array}\right] .
\end{array}
$$

This method of direct computation can quickly become too cumbersome.

3 n-step transition

Proposition 3.1. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov chain is stationary. That is, for any finite $n, m \in \mathbb{N}$ and $x \in X\{0, \ldots, n\}$, we have

$$
P\left(\cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\} \mid\left\{X_{0}=x_{0}\right\}\right)=P\left(\cap_{i=1}^{n}\left\{X_{m+i}=x_{i}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=\prod_{i=1}^{n} p_{x_{i-1} x_{i}}
$$

Proof. To this end, we compute the transition probabilities for the path $\left(x_{1}, \ldots, x_{n}\right)$ taken by
(i) the sample path $\left(X_{1}, \ldots, X_{n}\right)$ given the event $\left\{X_{0}=x_{0}\right\}$ and
(ii) by the sample path $\left(X_{m+1}, \ldots, X_{m+n}\right)$ given the event $\left\{X_{m}=x_{0}\right\}$.

For each $i \in\{0, \ldots, n\}$, we can define events $H_{i} \triangleq \cap_{j=0}^{i}\left\{X_{j}=x_{j}\right\}$. We observe that $H_{i}=\left\{X_{i}=x_{i}\right\} \cap H_{i-1}$ and $H_{i} \in \mathcal{F}_{i}=\sigma\left(X_{0}, \ldots, X_{i}\right)$ for all $i \in \mathbb{N}$. From the definition of event H_{n-1} and the conditional probability, we can write

$$
P_{x_{0}}\left(H_{n}\right)=P_{x_{0}}\left(\left\{X_{n}=x_{n}\right\} \cap H_{n-1}\right)=P\left(\left\{X_{n}=x_{n}\right\} \mid H_{n-1}\right) P_{x_{0}}\left(H_{n-1}\right)
$$

Using the fact that $H_{n-1}=\left\{X_{n-1}=x_{n-1}\right\} \cap H_{n-2}$, and the Markovity and homogeneity of the process X, we obtain

$$
P\left(\left\{X_{n}=x_{n}\right\} \mid H_{n-1}\right)=P\left(\left\{X_{n}=x_{n}\right\} \mid\left\{X_{n-1}=x_{n-1}\right\} \cap H_{n-2}\right)=p_{x_{n-1} x_{n}} .
$$

Inductively, we can write the conditional joint distribution of H_{n} given the event $\left\{X_{0}=x_{0}\right\}$ as

$$
P_{x_{0}}\left(H_{n}\right)=p_{x_{0} x_{1}} \ldots p_{x_{n-1} x_{n}} .
$$

Similarly, we can write for the sample path $\left(X_{m+1}, \ldots, X_{m+n}\right)$ given $X_{m}=x_{0}$,

$$
\left.P\left(\left\{X_{m+1}=x_{1}, \ldots, X_{m+n}=x_{n}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=\prod_{i=1}^{n} P\left(\left\{X_{m+i}=x_{i}\right)\right\} \mid\left\{X_{m+i-1}=x_{i-1}\right\}\right)=p_{x_{0} x_{1}} \ldots p_{x_{n-1} x_{n}}
$$

Corollary 3.2. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any states $x_{0}, x_{n} \in X$ and $n, m \in \mathbb{N}$, we have

$$
P\left(\left\{X_{n+m}=x_{n}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=P\left(\left\{X_{n}=x_{n}\right\} \mid\left\{X_{0}=x_{0}\right\}\right)
$$

Proof. It follows from summing over intermediate steps. Let $x \triangleq\left(x_{1}, \ldots, x_{n-1}\right) \in X^{n-1}$, then we can partition the event $\left\{X_{n}=x_{n}\right\}$ in terms of disjoint events $\left\{H_{n}\left(x, x_{n}\right): x \in X^{n-1}\right\}$ defined by $H_{n}\left(x, x_{n}\right) \triangleq \cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}$, and partition the event $\left\{X_{m+n}=x_{n}\right\}$ in terms of the disjoint events $\left\{F_{n}\left(x, x_{n}\right): x \in X^{n-1}\right\}$ defined by $F_{n}\left(x, x_{n}\right) \triangleq$ $\cap_{i=1}^{n}\left\{X_{m+i}=x_{i}\right\}$. Then, we can write

$$
\left\{X_{n}=x_{n}\right\}=\cup_{x \in X^{n-1}} H_{n}\left(x, x_{n}\right), \quad\left\{X_{m+n}=x_{n}\right\}=\cup_{x \in X^{n-1}} F_{n}\left(x, x_{n}\right)
$$

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain X, we have

$$
P\left(F_{n}\left(x, x_{n}\right) \mid\left\{X_{m}=x_{0}\right\}\right)=P\left(H_{n}\left(x, x_{n}\right) \mid\left\{X_{0}=x_{0}\right\}\right)
$$

Using the law of total probability, we can write the conditional probability

$$
P_{x_{0}}\left\{X_{n}=x_{n}\right\}=\sum_{x \in X^{n-1}} P_{x_{0}}\left(H_{n}\left(x, x_{n}\right)\right), \quad P\left(\left\{X_{m+n}=x_{n}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=\sum_{x \in X^{n-1}} P\left(F_{n}\left(x, x_{n}\right) \mid\left\{X_{m}=x_{0}\right\}\right)
$$

The result follows since each term in the summation is equal.
Definition 3.3. For a homogeneous Markov chain, we can define n-step transition probabilities for $x, y \in X$ and $m, n \in \mathbb{N}$

$$
p_{x y}^{(n)} \triangleq P\left(\left\{X_{n+m}=y\right\} \mid\left\{X_{m}=x\right\}\right)
$$

That is, the row $P_{x}^{(n)}=\left(p_{x y}^{(n)}: y \in X\right)$ is the conditional distribution of X_{n} given $X_{0}=x$.

