Lecture-20: DTMC: Representation

1 *n*-step transition

Definition 1.1. For a homogeneous Markov chain $X : \Omega to X^{\mathbb{Z}_+}$, we can define *n*-step transition probabilities for $x, y \in X$ and $m, n \in \mathbb{N}$

$$p_{xy}^{(n)} \triangleq P(\{X_{n+m} = y\} | \{X_m = x\}).$$

That is, the row $P_x^{(n)} = (p_{xy}^{(n)} : y \in \mathcal{X})$ is the conditional distribution of X_n given $X_0 = x$.

Theorem 1.2. The *n*-step transition probabilities form a semi-group. That is, for all positive integers m, n

$$P^{(m+n)} = P^{(m)}P^{(n)}$$

Proof. The events $\{\{X_m = z\} : z \in X\}$ partition the sample space Ω , and hence we can express the event $\{X_{m+n} = y\}$ as the following disjoint union

$$\{X_{m+n} = y\} = \bigcup_{z \in \mathcal{X}} \{X_{m+n} = y, X_m = z\}.$$

It follows from the Markov property and law of total probability that for any states x, y and positive integers m, n

$$p_{xy}^{(m+n)} = \sum_{z \in \mathcal{X}} P_x(\{X_{n+m} = y, X_m = z\}) = \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z, X_0 = x\}) P_x(\{X_m = z\})$$
$$= \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z\}) P_x(\{X_m = z\}) = \sum_{z \in \mathcal{X}} p_{xz}^{(m)} p_{zy}^{(n)} = (P^{(m)} P^{(n)})_{xy}.$$

Since the choice of states $x, y \in \mathcal{X}$ were arbitrary, the result follows.

Corollary 1.3. The *n*-step transition probability matrix is given by $P^{(n)} = P^n$ for any positive integer *n*.

Proof. In particular, we have $P^{(n+1)} = P^{(n)}P^{(1)} = P^{(1)}P^{(n)}$. Since $P^{(1)} = P$, we have $P^{(n)} = P^n$ by induction.

Remark 1. That is, for all states x, y and non-negative integers $n \in \mathbb{Z}_+$, $p_{xy}^{(n)} = P_{xy}^n$.

2 Representation

2.1 Chapman Kolmogorov equations

We denote by $\pi_0 \in \mathbb{R}^{\mathcal{X}}_+$ the initial distribution of the Markov chain, that is $\pi_0(x) = P\{X_0 = x\}$. The distribution of X_n is given by $\pi_n \in \mathbb{R}^{\mathcal{X}}_+$, such that for any state $x \in \mathcal{X}$.

$$\pi_n(x) = P\{X_n = x\} = \sum_{z \in \mathcal{X}} p_{zx}^{(n)} \pi_0(z) = (\pi_0 P^n)_x.$$

We can write this succinctly in terms of transition probability matrix *P* as $\mu_n = \mu_0 P^n$. We can alternatively derive this result by the following Lemma.

Lemma 2.1. The right multiplication of a probability vector with the transition matrix *P* transforms the probability distribution of current state to probability distribution of the next state. That is,

$$\pi_{n+1} = \pi_n P$$
, for all $n \in \mathbb{N}$.

Proof. To see this, we fix $y \in X$ and from the law of total probability and the definition conditional probability, we observe that

$$\pi_{n+1}(y) = P\{X_{n+1} = y\} = \sum_{x \in \mathcal{X}} P\{X_{n+1} = y, X_n = x\} = \sum_{x \in \mathcal{X}} P\{X_n = x\} p_{xy} = (\pi_n P)_y.$$

2.2 Transition graph

We can define a collection *E* of possible one-step transitions indicated by the initial and the final state, as

$$E \triangleq \left\{ \left[x, y \right\} \in \mathfrak{X} \times \mathfrak{X} : p_{xy} > 0 \right\}.$$

A transition matrix *P* is sometimes represented by a directed weighted graph $G = (\mathcal{X}, E, W)$, where the set of nodes in the graph *G* is the state space \mathcal{X} , and the set of directed edges is the set of possible transitions. In addition, this graph has a weight $w_e = p_{xy}$ on each edge $e = [x, y] \in E$.

Example 2.2 (Integer random walk). For an integer random walk $X = (X_n \in \mathbb{Z} : n \in \mathbb{N})$ with *i.i.d.* stepsize sequence $Z = (Z_n \in \{-1,1\}, n \in \mathbb{N})$, we have and infinite graph $G = (\mathbb{Z}, E)$, where the edge set is

$$E = \{(n, n+1) : n \in \mathbb{Z}\} \cup \{(n, n-1) : n \in \mathbb{Z}\}.$$

We have plotted the sub-graph of the entire transition graph for states $\{-1,0,1\}$ in Figure 1.

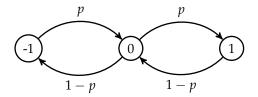


Figure 1: Sub-graph of the entire transition graph for an integer random walk with *i.i.d.* step-sizes in $\{-1,1\}$ with probability *p* for the positive step.

Example 2.3 (Sequence of experiments). Consider the sequence of experiments with the set of outcomes $\mathcal{X} = \{0,1\}$ with the transition matrix

$$P = \begin{bmatrix} 1-q & q \\ p & 1-p \end{bmatrix}.$$

We have plotted the corresponding transition graph for this two-state Markov chain in Figure 2.

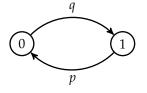


Figure 2: Markov chain for the sequence of experiments with two outcomes.

2.3 Random Mapping Theorem

We saw some example of Markov processes where $X_n = X_{n-1} + Z_n$, and $(Z_n : n \in \mathbb{N})$ is an iid sequence, independent of the initial state X_0 . We will show that any discrete time Markov chain is of this form, where the sum is replaced by arbitrary functions.

Theorem 2.4 (Random mapping theorem). For any DTMC X, there exists an i.i.d. sequence $Z \in \Lambda^{\mathbb{N}}$ and a function $f : \mathfrak{X} \times \Lambda \to \mathfrak{X}$ such that $X_n = f(X_{n-1}, Z_n)$ for all $n \in \mathbb{N}$.

Remark 2. A **random mapping representation** of a transition matrix *P* on state space \mathfrak{X} is a function *f* : $\mathfrak{X} \times \Lambda \rightarrow \mathfrak{X}$, along with a Λ -valued random variable *Y*, satisfying

$$P\{f(x,Y) = y\} = p_{xy}, \text{ for all } x, y \in \mathcal{X}.$$

Proof. It suffices to show that every transition matrix *P* has a random mapping representation. Then for the mapping *f* and the *i.i.d* sequence $Z = (Z_n : n \in \mathbb{N})$ with the same distribution as random variable *Y*, we would have $X_n = f(X_{n-1}, Z_n)$ for all $n \in \mathbb{N}$.

Let $\Lambda = [0,1]$, and we choose the *i.i.d.* sequence *Z*, uniformly at random from this interval. Since \mathfrak{X} is countable, it can be ordered. We let $\mathfrak{X} = \mathbb{N}$ without any loss of generality. We set $F_{xy} \triangleq \sum_{w \le y} p_{xw}$ and define

$$f(x,z) = \sum_{y \in \mathbb{N}} y \mathbb{1}_{\left\{F_{x,y-1} < z \leq F_{x,y}\right\}} = \inf \left\{y \in \mathfrak{X} : z \leq F_{x,y}\right\}.$$

Since $f(x, Z_n)$ is a discrete random variable taking value $y \in \mathcal{X}$, iff the uniform random variable Z_n lies in the interval $(F_{x,y-1}, F_{x,y}]$. That is, the event $\{f(x, Z_n) = y\} = \{Z_n \in (F_{x,y-1}, F_{x,y}]\}$ for all $y \in \mathcal{X}$. It follows that

$$P\{f(x,Z) = y\} = P\{F_{x,y-1} < Z \leq F_{x,y}\} = F_{x,y} - F_{x,y-1} = p_{xy}.$$

3 Strong Markov property (SMP)

We are interested in generalizing the Markov property to any random times. For a DTMC $X : \Omega \to X^{\mathbb{Z}_+}$, let $T : \Omega \to \mathbb{N}$ be an integer random variable, and we are interested in knowing whether for any historical event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$ and any state $x, y \in \mathcal{X}$, we have

$$P(\{X_{T+1} = y\} \mid H_{T-1} \cap \{X_T = x\}) = p_{xy}.$$

Example 3.1 (Two-state DTMC). For the two state Markov chain $X \in \{0,1\}^{\mathbb{Z}_+}$ such that $P_0\{X_1 = 1\} = q$ and $P_1\{X_1 = 0\} = p$ for $p, q \in [0,1]$. Let $T : \Omega \to \mathbb{N}$ be an integer random variable defined as

$$T \triangleq \sup \{n \in \mathbb{N} : X_i = 0, \text{ for all } i \leq n\}.$$

That is, $\{T = n\} = \{X_1 = 0, ..., X_n = 0, X_{n+1} = 1\}$. Hence, for the historical event $H_{T-1} = \{X_1 = ..., X_{T-1} = 0\}$, the conditional probability $P(\{X_{T+1} = 1\} | H_{T-1} \cap \{X_T = 0\}) = 1$, and not equal to q.

Definition 3.2. Let *T* be an integer valued stopping time with respect to a random sequence *X*. Then for all states $x, y \in X$ and the event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$, the process *X* satisfies the **strong Markov property** if

$$P(\{X_{T+1} = y\} \mid \{X_T = x\} \cap H_{T-1}) = P(\{X_{T+1} = y\} \mid \{X_T = x\}).$$

Lemma 3.3. Homogeneous Markov chains satisfy the strong Markov property.

Proof. Let $X \in X^{\mathbb{Z}_+}$ be a homogeneous DTMC with transition matrix *P*. We take any historical event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$, and $x, y \in X$. Then, from the definition of conditional probability, the law of total probability, and the Markovity of the process *X*, we have

$$P(\{X_{T+1} = y\} \mid H_{T-1} \cap \{X_T = x\}) = \frac{\sum_{n \in \mathbb{Z}_+} P(\{X_{T+1} = y, X_T = x\} \cap H_{T-1} \cap \{T = n\})}{P(\{X_T = x\} \cap H_{T-1})}$$

= $\sum_{n \in \mathbb{Z}_+} P(\{X_{n+1} = y\} \mid \{X_n = x\} \cap H_{n-1} \cap \{T = n\}) P(\{T = n\} \mid \{X_T = x\} \cap H_{T-1})$
= $p_{xy} \sum_{n \in \mathbb{Z}_+} P(\{T = n\} \mid \{X_T = x\} \cap H_{T-1}) = p_{xy}.$

This equality follows from the fact that the event $\{T = n\}$ is completely determined by (X_0, \dots, X_n) .

Example 3.4 (For a non stopping time *T***).** As an exercise, if we try to use the Markov property on arbitrary random variable *T*, the SMP may not hold. For example, define a non-stopping time $T \triangleq \inf \{n \in \mathbb{Z}_+ : X_{n+1} = y\}$ for $y \in \mathcal{X}$. In this case, we have

$$P(\{X_{T+1} = y\} \mid \{X_T = x, \dots, X_0 = x_0\}) = 1_{\{p_{xy} > 0\}} \neq P(\{X_1 = y\} \mid \{X_0 = x\}) = p_{xy}.$$

Remark 3. A useful application of the strong Markov property is as follows. Let $x_0 \in X$ be a fixed state and $\tau_0 = 0$. Let τ_n denote the stopping times at which the Markov chain visits x_0 for the *n*th time. That is,

$$\tau_n \triangleq \inf \left\{ n > \tau_{n-1} : X_n = x_0 \right\}.$$

Then $(X_{\tau_n+m} \in \mathfrak{X}^{\Omega} : m \in \mathbb{Z}_+)$ is a stochastic replica of $X : \Omega \to \mathfrak{X}^{\mathbb{Z}_+}$ with $X_0 = x_0$.