
Lecture-24: Poisson Processes

1 Simple point processes

Consider the d-dimensional Euclidean space Rd. The collection of Borel measurable subsets B(Rd) of the
above Euclidean space is generated by sets B(x),

{
y ∈Rd : yi 6 xi

}
for x ∈Rd.

Definition 1.1. A simple point process is a random countable collection of distinct points S : Ω→ RdN
,

such that the distance ‖Sn‖ →∞ as n→∞.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. In
R+, one can order the points of the process S : Ω→ RN

+ to get another process S̃ : Ω→ RN
+ , such that

S̃n = S(n) is the nth order statistics of S. That is, S(0) , 0, and S(n) , inf
{

Sk > S(n−1) : k ∈N
}

. such that
S(1) < S(2) < · · · < S(n) < . . . , and limn∈N S(n) = ∞. The Borel measurable sets for R+ are generated by
the collection of half-open intervals {(0, t] : t ∈R+}.

Point processes can model many interesting physical processes.

1. Arrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.

2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

Definition 1.3. Corresponding to a point process S, we denote the number of points in a set A ∈ B(Rd) by

N(A) = ∑
n∈N

1{Sn∈A}, where we have N(∅) = 0.

Then, N : Ω→Z+
B(Rd) is called a counting process for the point process S : Ω→RdN

.

Definition 1.4. A counting process is simple if the underlying process is simple.

Remark 1. Let N : Ω→Z+
B(X) be the counting process for the point process S : Ω→ XN.

i Note that the point process S and the counting process N carry the same information.

ii The distribution of point process S is completely characterized by the finite dimensional distribu-
tions (N(A1), . . . , N(Ak) : bounded A1, . . . , Ak ∈ B) for some finite k ∈N.
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Example 1.5 (Simple point process on the half-line). The number of points in the half-open interval
(0, t] is denoted by

N(t), N((0, t]) = ∑
n∈N

1{Sn∈(0,t]}.

Since the Borel measurable sets B(R+) are generated by half-open intervals {(0, t] : t ∈R+}, we denote
the counting process by N : Ω→ Z+

R+ , where N(t) = N((0, t]). For s < t, the number of points in
interval (s, t] is N((s, t]) = N((0, t])− N((0, s]) = N(t)− N(s).

Theorem 1.6. Distribution of a simple point process S : Ω→ XN is completely determined by void probabilities
(P{N(A) = 0} : A ∈ B(X)).

Proof. We will show this by induction on the number of points in a bounded set A ∈ B. We assume that
(Bk ∈ B(X) : k ∈N) is a sequence of sufficiently small sets partitioning X such that N(Bi) ∈ {0,1} for all
i ∈N. We define Ak , Bk ∩ A to write

P{N(A) = 1} = ∑
k∈N

P{N(Ak) = 1, N(A \ Ak) = 0} .

We observe the following set equality {N(Ak) = 1, N(A \ Ak) = 0} ∪ {N(A) = 0}= {N(A \ Ak) = 0} , and
hence we can write

P{N(A) = 1} = ∑
k∈N

(P{N(A \ Ak) = 0} − P{N(A) = 0}) .

We assume that {N(A) = n} and by the induction hypothesis P{N(B) = n− 1} can be completely charac-
terized by the void probabilities for all bounded sets B ∈ B. Then, we can write

P{N(A) = n} = (1− 1
n
)P{N(A) = n− 1}+ 1

n ∑
k∈N

(P{N(A \ Ak) = n− 1} − P{N(A) = n− 1}) .

Definition 1.7. A non-negative integer valued random variable N : Ω→ Z+ is called Poisson if for some
constant λ > 0, we have

P{N = n} = e−λ λn

n!
.

Remark 2. It is easy to check that EN = Var[N] = λ. Furthermore, the moment generating function MN(t) =
EetN = eλ(et−1) exists for all t ∈R.

Corollary 1.8. A simple counting process N : Ω→ Z
B(X)
+ has Poisson marginal distribution if and only if void

probabilities are exponential.

Proof. We will show that if void probabilities are exponential, then the marginal distribution is Poisson.
Since Ak are very small, we get eΛ(Ak) − 1≈ Λ(Ak). Therefore, we write that

P{N(A) = 1} = ∑
k∈N

e−Λ(A)(eΛ(Ak) − 1) ≈ Λ(A)e−Λ(A).

By inductive hypothesis, let P{N(A) = n− 1}= e−Λ(A) Λ(A)n−1

(n−1)! for all bounded A∈B(X) and n∈N. Then,
we can write

P{N(A) = n} = e−Λ(A) Λ(A)n−1

(n− 1)!
(1− 1

n
+

1
n ∑

k∈N

(
eΛ(Ak)

(
1− Λ(Ak)

Λ(A)

)n−1
− 1
)

.

From the fact that ∑k∈N Λ(Ak) = Λ(A) and the approximation eΛ(Ak)
(

1− Λ(Ak)
Λ(A)

)n−1
− 1 ≈ Λ(Ak)− (n−

1)Λ(Ak)
Λ(A)

for sufficiently small Ak, we get the induction step P{N(A) = n} ≈ e−Λ(A) Λ(A)n

n! .
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Definition 1.9. A counting process N : Ω→Z
B(X)
+ has the completely independence property, if for any

collection of finite disjoint and bounded sets A1, . . . , Ak ∈ B(X), the vector (N(A1), . . . , N(Ak)) : Ω→Zk
+ is

independent. That is,

P
k⋂

i=1
{N(Ai) = ni} =

k

∏
i=1

P{N(Ai) = ni} , n ∈Zk
+.

2 Poisson point process

Remark 3. Recall that |A| =
∫

x∈A dx is the volume of the set A ∈ B(Rd) and for any such A, the intensity
measure of this set is scaled volume

Λ(A) =
∫

x∈A
λ(x)dx,

for the intensity density λ : Rd→R+. If the intensity density λ(x) = λ for all x ∈Rd, then Λ(A) = λ |A|. In
particular for partition A1, . . . , Ak for a set A, we have Λ(A) = ∑k

i=1 Λ(Ai).

Definition 2.1. A simple point process S : Ω→ XN is Poisson point process, if the associated counting
process N : Ω→Z

B(X)
+ has complete independence property and the marginal distributions are Poisson.

Definition 2.2. The intensity measure Λ : B(X)→ R+ of Poisson process S is defined by Λ(A) , EN(A)
for all bounded A ∈ B(X).

Remark 4. That is, for a Poisson process with intensity measure Λ, k ∈Z+, and bounded mutually disjoint
sets A1, . . . , Ak ∈ B(X), we have

P{N(A1) = n1, . . . , N(Ak) = nk} =
k

∏
i=1

(
e−Λ(Ai)

Λ(Ai)
ni

ni!

)
, n ∈Zk

+.

Definition 2.3. If the intensity measure Λ of a Poisson process S satisfies Λ(A) = λ |A| for all bounded
A ∈ B(X), then we call S a homogeneous Poisson point process and λ is its intensity.

3 Equivalent characterizations

Theorem 3.1 (Equivalences). Following are equivalent for a simple counting process N : Ω→Z+
B(X).

i Process N is Poisson with locally finite intensity measure Λ.

ii For each bounded A ∈ B(X), we have P{N(A) = 0} = e−Λ(A).

iii For each bounded A ∈ B(X), the number of points N(A) is a Poisson with parameter Λ(A).

iv Process N has the completely independence property, and EN(A) = Λ(A).

Proof. We will show that i =⇒ ii =⇒ iii =⇒ iv =⇒ i .

i =⇒ ii It follows from the definition of Poisson point processes and definition of Poisson random vari-
ables.

ii =⇒ iii From Theorem 1.6, we know that void probabilities determine the entire distribution.

iii =⇒ iv We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean EN(A) = Λ(A).
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CIP: For disjoint and bounded A1, . . . , Ak ∈ B and A = ∪k
i=1 Ai, we have N(A) = N(A1) + . . . N(A1).

Taking expectations on both sides, and from the linearity of expectation, we get

Λ(A) = Λ(A1) + · · ·+ Λ(Ak).

From the number of partitions n1 + · · ·+ nk = n, we can write

P{N(A) = n} = ∑
n1+···+nk=n

P{N(A1) = n1, . . . , N(Ak) = nk} .

Using the definition of Poisson distribution, we can write the LHS of the above equation as

P{N(A) = n} = e−Λ(A) Λ(A)n

n!
=

k

∏
i=1

e−Λ(Ai)
(∑k

i=1 Λ(Ai))
n

n!
.

Since the expansion of (a1 + · · ·+ ak)
n = ∑n1+···+nk=n (

n
n1,...,nk

)∏k
i=1 ani

i , we get

P{N(A) = n}= 1
n! ∑

n1+···+nk=n

(
n

n1, . . . ,nk

) k

∏
i=1

e−Λ(Ai)Λ(Ai))
ni = ∑

n1+···+nk=n

k

∏
i=1

e−Λ(Ai)
Λ(Ai))

ni

ni!
.

Equating each term in the summation, we get

P{N(A1) = n1, . . . , N(Ak) = nk} =
k

∏
i=1

P{N(Ai) = ni} .

iv =⇒ i Since void probabilities describe the entire distribution, it suffices to show that P{N(A) = 0} =
e−Λ(A) for all bounded A ∈ B.

Corollary 3.2 (Poisson process on the half-line). A random process N : Ω→ Z
R+
+ indexed by time t ∈ Z+ is

the counting process associated with a one-dimensional Poisson process S : Ω→RN
+ having intensity measure Λ iff

(a) Starting with N(0) = 0, the process N(t) takes a non-negative integer value for all t ∈R+;

(b) the increment N(t + s)− N(t) is surely nonnegative for any s ∈R+;

(c) the increments N(t1), N(t2)−N(t1), . . . , N(tn)−N(tn−1) are independent for any 0 < t1 < t2 < · · ·< tn−1 <
tn;

(d) the increment N(t + s)− N(t) is distributed as Poisson random variable with parameter Λ((t, t + s]).

The Poisson process is homogeneous with intensity λ, iff in addition to conditions (a), (b), (c), the distribution of the
increment N(t + s)− N(t) depends on the value s ∈ R+ but is independent of t ∈ R+. That, is the increments are
stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a)
and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete indepen-
dence property of the point process, and condition (d) provides the intensity measure. The result follows
from the equivalence iv in Theorem 3.1.
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