Lecture-25: Poisson processes: Conditional distribution

1 Joint conditional distribution of points in a finite window

Let $\mathfrak{X} = \mathbb{R}^d$ be a *d*-dimensional Euclidean space.

Proposition 1.1. Let $k \in \mathbb{N}$ be any positive integer. For a Poisson point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ with intensity measure $\Lambda : \mathfrak{B}(\mathfrak{X}) \to \mathbb{R}_+$, consider a bounded subset $A \in \mathfrak{B}(\mathfrak{X})$ and subsets $(A_1, \ldots, A_k) \in \mathfrak{B}(\mathfrak{X})^k$ that partition A. Let $n_1, \ldots, n_k \in \mathbb{Z}_+$ such that $n_1 + \cdots + n_k = n$, then

$$P(\{N(A_1) = n_1, ..., N(A_k) = n_k\} \mid \{N(A) = n\}) = \binom{n}{n_1, ..., n_k} \prod_{i=1}^k \left(\frac{\Lambda(A_i)}{\Lambda(A)}\right)^{n_i}.$$
 (1)

Proof. It follows from the definition of joint distribution of $(N(A_1),...,N(A_k))$, the fact that $\bigcap_{i=1}^k \{N(A_i) = n_i\} \subseteq \{N(A) = n\}$, and that the intensity measure add over disjoint sets, i.e. $\Lambda(A) = \sum_{i=1}^k \Lambda(A_i)$.

Remark 1. Let $S: \Omega \to \mathcal{X}^{\mathbb{N}}$ be a Poisson point process with intensity measure $\Lambda: \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$, and $(A_1, \ldots, A_k) \in \mathcal{B}(\mathcal{X})^k$ be disjoint bounded subsets such that $A = \cup_{i=1}^k A_i \in \mathcal{B}(\mathcal{X})$. Since S is a simple point process, each point S_n is unique. Therefore, we can identify the random sequence S of points in \mathcal{X} as a random set of points in \mathcal{X} . It follows that $\{N(A) = n\} = \{|S \cap A| = n\}$.

i₋ From the disjointness of A_i , we have $N(A) = N(A_1) + \cdots + N(A_k)$, and from the linearity of expectations, we get

$$\Lambda(A) = \mathbb{E}N(A) = \sum_{i=1}^{k} \mathbb{E}N(A_i) = \sum_{i=1}^{k} \Lambda(A_i).$$

ii_ Defining $p_i \triangleq \frac{\Lambda(A_i)}{\Lambda(A)}$, we see that (p_1, \ldots, p_k) is a probability distribution. We also observe that

$$p_i = P(\{N(A_i) = 1\} \mid \{N(A) = 1\}) = P(\{|S \cap A_i| = 1\} \mid \{|S \cap A| = 1\}).$$

When N(A) = 1, we can call the point of S in A as S_1 WLOG. That is, we let $\{S_1\} = S \cap A$, to observe

$$p_i = P(\{S_1 \in A_i\} \mid \{S_1 \in A\}).$$

Similarly, when $N(A) = n_i$, we call the points of S in A as $S_1, ..., S_{n_i}$. That is, we let $\{S_1, ..., S_{n-i}\} = S \cap A$, to observe

$$p_i^{n_i} = P(\{N(A_i) = n_i\} \mid \{N(A) = n_i\}) = P(\{|S \cap A_i| = n_i\} \mid \{|S \cap A| = n_i\})$$

= $P(\bigcap_{j=1}^{n_i} \{S_j \in A_i\} \mid \{\{S_1, \dots, S_{n_i}\} = S \cap A\}) = \prod_{j=1}^{n_i} P(\{S_j \in A_i\} \mid \{S_j \in A\}).$

iii_ We can rewrite the Equation (1) as a multinomial distribution, where

$$P(\{N(A_1) = n_1, ..., N(A_k) = n_k\} \mid \{N(A) = n\}) = \binom{n}{n_1, ..., n_k} p_1^{n_1} ... p_k^{n_k}.$$

iv_ Let $A \in \mathcal{B}(\mathcal{X})$ be a bounded set, $\mathcal{P}(A)$ be the set of all subsets of A. Let $\mathcal{P}_k(A)$ be the collection of k-partitions (E_1, \ldots, E_k) of set A. That is,

$$\mathcal{P}_k(A) = \left\{ (E_1, \dots, E_k) \in \mathcal{P}([n])^k : E_i \cap E_j = \emptyset, i \neq j, \bigcup_{i=1}^k E_i = A \right\}.$$

We define $\mathcal{P}_k(n_1,...,n_k)$ to be the collection of all k-partitions $(E_1,...,E_k)$ of any finite set $A \subseteq \mathcal{B}(\mathfrak{X})$ such that $|E_i| = n_i$ for $i \in [k]$ and $n_1 + \cdots + n_k = |A|$. That is,

$$\mathcal{P}_k(A, n_1, \dots, n_k) \triangleq \{(E_1, \dots, E_k) \in \mathcal{P}_k(A) : |E_i| = n_i \text{ for all } i \in [k]\}.$$

Then, the multinomial coefficient accounts for number of partitions of n points into sets with n_1, \ldots, n_k points. That is,

$$\binom{n}{n_1,\ldots,n_k} = |\mathcal{P}_k([n],n_1,\ldots,n_k)|.$$

 v_- Recall that the event $\{N(A_i) = n_i\} = \{|S \cap A_i| = n_i\}$. Hence, we can write

$$P(\cap_{i=1}^{k} \{ | S \cap A_{i}| = n_{i} \} \mid \{ | S \cap A| = n \}) = \binom{n}{n_{1}, \dots, n_{k}} p_{1}^{n_{1}} \dots p_{k}^{n_{k}}$$

$$= \sum_{(E_{1}, \dots, E_{k}) \in \mathcal{P}_{k}(S \cap A, n_{1}, \dots, n_{k})} \prod_{i=1}^{k} \prod_{S_{i} \in E_{i}} P(\{S_{j} \in A_{i}\} \mid \{S_{j} \in A\}).$$

vi_ We further observe that when $N(A_i) = n_i$ for all $i \in [k]$, then $(S \cap A_1,...,S \cap A_k) \in \mathcal{P}_k(S \cap A,n_1,...,n_k)$. Therefore, we can re-write the event

$$\bigcap_{i=1}^{k} \{ N(A_i) = n_i \} = \bigcap_{i=1}^{k} \{ |S \cap A_i| = n_i \} = \bigcup_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} (\bigcap_{i=1}^{k} \{ S \cap A_i = E_i \}).$$

That is, we can write the conditional probability

$$P(\bigcap_{i=1}^{k} \{N(A_i) = n_i\} \mid \{N(A) = n\}) = \sum_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} P(\bigcap_{i=1}^{k} \{S \cap A_i = E_i\} \mid \{S \cap A = E\})$$

$$= \sum_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} P(\bigcap_{i=1}^{k} \bigcap_{S_j \in E_i} \{S_j \in A_i\} \mid \{S \cap A = E\}).$$

vii_ Let $S_1,...,S_n$ be the n points in $E = S \cap A$. Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these points falling inside the window A, the conditional probability of each point falling in partition A_i is independent of all other points and given by p_i . That is, we have

$$P(\cap_{i=1}^{k} \cap_{S_{j} \in E_{i}} \{S_{j} \in A_{i}\} \mid \{S \cap A = E\}) = \prod_{i=1}^{k} \prod_{S_{i} \in E_{i}} P(\{S_{j} \in A_{i}\} \mid \{S_{j} \in A\}) = \prod_{i=1}^{k} p_{i}^{n_{i}} = \prod_{i=1}^{k} \left(\frac{\Lambda(A_{i})}{\Lambda(A)}\right)^{n_{i}}.$$

It means that given n points in the window A, the location of these points are independently and identically distributed in A according to the distribution $\frac{\Lambda(\cdot)}{\Lambda(A)}$.

- viii_ If the Poisson process is homogeneous, the distribution is uniform over the window A.
- ix_ For a Poisson process with intensity measure Λ and any bounded set $A \in \mathcal{B}$, we have N(A) a Poisson random variable with parameter $\Lambda(A)$. Given N(A), the location of all the points in $S \cap A$ are i.i.d. with density $\frac{\lambda(x)}{\Lambda(A)}$ for all $x \in A$.

Corollary 1.2. For a homogeneous Poisson point process on the half-line with ordered set of points $(S_{(n)} \in \mathbb{R}_+)$:

 $n \in \mathbb{N}$), we can write the conditional density of ordered points $(S_{(1)}, \ldots, S_{(k)})$ given N(t) = k as ordered statistics of i.i.d. uniformly distributed random variables. Specifically, we have

$$f_{S_{(1)},\dots,S_{(k)} \mid N(t)=k}(t_1,\dots,t_k) = k! \frac{\mathbbm{1}_{\{0 < t_1 \leqslant \dots \leqslant t_k \leqslant t\}}}{t}.$$

Proof. Given $\{N(t) = k\}$, we can denote the points of the Poisson process in (0,t] by S_1, \ldots, S_k . From the above remark, we know that S_1, \ldots, S_k are *i.i.d.* uniform in (0,t], conditioned on the number of points N(t) = k. Hence, we can write

$$F_{S_1,\ldots,S_k \mid N(t)=k}(t_1,\ldots,t_k) = P(\cap_{i=1}^k \{S_i \in (0,t_i]\} \mid \{N(t)=k\}) = \prod_{i=1}^k P(\{S_i \in (0,t_i]\} \mid \{S_i \in (0,t_i]\}) = \prod_{i=1}^k \frac{t_i}{t} \mathbb{1}_{\{0 < t_i \le t\}}.$$

It follows that for any permutation σ : $[k] \to [k]$, the joint distribution of $(S_{\sigma(1)}, \ldots, S_{\sigma(k)})$ is identical to that of (S_1, \ldots, S_k) . Further, we observe that the order statistics of $(S_{\sigma(1)}, \ldots, S_{\sigma(k)})$ is identical to that of (S_1, \ldots, S_k) . Therefore, we can write the following equality for the events

$$\left\{0 < S_{(1)} \leqslant \ldots \leqslant S_{(k)} \leqslant t_k \leqslant t\right\} = \cup_{\sigma: [k] \to [k] \text{ permutation } \cap_{i=1}^k \left\{S_{\sigma(i)} \leqslant t_i\right\}.$$

The result follows since the number of permutations $\sigma : [k] \to [k]$ is k!.