Lecture-26: Properties of Poisson point processes

1 Laplace functional

Remark 1. Let $\mathfrak{X} = \mathbb{R}^d$ be the *d*-dimensional Euclidean space. For a simple point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$, we will consider *S* to be a set of countable points in \mathfrak{X} . Let $N : \mathcal{B}(\mathfrak{X}) \to \mathbb{Z}_+$ be the counting process associated with the simple point process *S*, then we observe that dN(x) = 0 for all $x \notin S$ and $dN(x) = \delta_x \mathbb{1}_{\{x \in S\}}$. Hence, for any function $f : \mathfrak{X} \to \mathbb{R}$ and bounded $A \in \mathcal{B}(\mathfrak{X})$, we have

$$\int_{x\in A} f(x)dN(x) = \sum_{i\in\mathbb{N}} f(S_i)\mathbb{1}_{\{S_i\in A\}} = \sum_{S_i\in A} f(S_i).$$

Definition 1.1. The **Laplace functional** $\mathcal{L} : \mathbb{R}^{\mathcal{X}}_+ \to \mathbb{R}_+$ of a point process $S : \Omega \to \mathcal{X}^{\mathbb{N}}$ and associated counting process $N : \mathcal{B}(\mathcal{X}) \to \mathbb{Z}_+$ is defined for all non-negative Borel measurable function $f : \mathcal{X} \to \mathbb{R}_+$ as

$$\mathcal{L}_{S}(f) \triangleq \mathbb{E} \exp\left(-\int_{\mathbb{R}^{d}} f(x) dN(x)\right).$$

Remark 2. For simple function $f(x) = \sum_{i=1}^{k} t_i \mathbb{1}_{\{x \in A_i\}}$, we can write the Laplace functional

$$\mathcal{L}_{S}(f) = \mathbb{E} \exp\left(-\sum_{i=1}^{k} t_{i} \int_{A_{i}} dN(x)\right) = \mathbb{E} \exp\left(-\sum_{i=1}^{k} t_{i} N(A_{i})\right),$$

as a function of the vector $(t_1, t_2, ..., t_k)$, a joint Laplace transform of the random vector $(N(A_1), ..., N(A_k))$. This way, one can compute all finite dimensional distribution of the counting process *N*.

Proposition 1.2. The Laplace functional of a Poisson point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ with intensity measure $\Lambda : \mathcal{B}(\mathfrak{X}) \to \mathbb{R}_+$, is given by

$$\mathcal{L}_{S}(f) = \exp\left(-\int_{\mathcal{X}} (1 - e^{-f(x)}) d\Lambda(x)\right).$$

Proof. For a bounded Borel measurable set $A \in \mathcal{B}(\mathcal{X})$, consider $g(x) = f(x) \mathbb{1}_{\{x \in A\}}$. Then,

$$\mathcal{L}_{S}(g) = \mathbb{E}\exp(-\int_{\mathcal{X}} g(x)dN(x)) = \mathbb{E}\exp(-\int_{A} f(x)dN(x)).$$

Clearly $dN(x) = \delta_x \mathbb{1}_{\{x \in S\}}$ and hence we can write $\mathcal{L}_S(g) = \mathbb{E} \exp \left(-\sum_{S_i \in S \cap A} f(S_i)\right)$. We know that the probability of $N(A) = |S \cap A| = n$ points in set A is given by

$$P\{N(A) = n\} = e^{-\Lambda(A)} \frac{\Lambda(A)^n}{n!}.$$

Given there are *n* points in set *A*, the density of *n* point locations are independent and given by

$$f_{S_1,\ldots,S_n \mid N(A)=n}(x_1,\ldots,x_n) = \prod_{i=1}^n \frac{d\Lambda(x_i)\mathbb{1}_{\{x_i \in A\}}}{\Lambda(A)}.$$

Hence, we can write the Laplace functional as

$$\mathcal{L}_{S}(g) = e^{-\Lambda(A)} \sum_{n \in \mathbb{Z}_{+}} \frac{\Lambda(A)^{n}}{n!} \prod_{i=1}^{n} \int_{A} e^{-f(x_{i})} \frac{d\Lambda(x_{i})}{\Lambda(A)} = \exp\left(-\int_{\mathcal{X}} (1 - e^{-g(x)}) d\Lambda(x)\right).$$

Result follows from taking increasing sequences of sets $A_k \uparrow \mathfrak{X}$ and monotone convergence theorem. \Box

1.1 Superposition of point processes

Definition 1.3. Let $S^k : \Omega \to \mathcal{X}^{\mathbb{N}}$ be a simple point process with intensity measures $\Lambda_k : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ and counting process $N_k : \mathcal{B}(\mathcal{X}) \to \mathbb{Z}_+$, for each $k \in \mathbb{N}$. The **superposition** of point processes $(S^k : k \in \mathbb{N})$ is defined as a point process $S \triangleq \bigcup_k S^k$.

Remark 3. The counting process associated with superposition point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ is given by $N : \mathcal{B}(\mathfrak{X}) \to \mathbb{Z}_+$ defined by $N \triangleq \sum_k N_k$, and the intensity measure of point process S is given by $\Lambda : \mathcal{B}(\mathfrak{X}) \to \mathbb{R}_+$ defined by $\Lambda = \sum_k \Lambda_k$ from monotone convergence theorem.

Remark 4. The superposition process *S* is simple iff $\sum_k N_k$ is locally finite.

Theorem 1.4. The superposition of independent Poisson point processes $(S^k : k \in \mathbb{N})$ with intensities $(\Lambda_k : k \in \mathbb{N})$ is a Poisson point process with intensity measure $\sum_k \Lambda_k$ if and only if the latter is a locally finite measure.

Proof. Consider the superposition $S = \sum_k S^k$ of independent Poisson point processes $S^k \in \mathcal{X}$ with intensity measures Λ_k . We will prove just the sufficiency part this theorem. We assume that $\sum_k \Lambda_k$ is locally finite measure. It is clear that $N(A) = \sum_k N_k(A)$ is finite by locally finite assumption, for all bounded sets $A \in \mathcal{B}(\mathcal{X})$. In particular, we have $dN(x) = \sum_k dN_k(x)$ for all $x \in \mathcal{X}$. From the monotone convergence theorem and the independence of counting processes, we have for a non-negative Borel measurable function $f : \mathcal{X} \to \mathbb{R}$,

$$\mathcal{L}_{S}(f) = \mathbb{E} \exp\left(-\int_{\mathcal{X}} f(x) \sum_{k} dN_{k}(x)\right) = \prod_{k} \mathcal{L}_{S^{k}} = \exp\left(-\int_{\mathcal{X}} (1 - e^{-f(x)}) \sum_{k} \Lambda_{k}(x)\right).$$

1.2 Thinning of point processes

Definition 1.5. Consider a probability **retention function** $p : \mathcal{X} \to [0,1]$ and an independent Bernoulli point retention process $Y : \Omega \to \{0,1\}^{\mathcal{X}}$ such that $\mathbb{E}Y(x) = p(x)$ for all $x \in \mathcal{X}$. The **thinning** of point process $S : \Omega \to \mathcal{X}^{\mathbb{N}}$ with the probability retention function $p : \mathcal{X} \to [0,1]$ is a point process $S^{(p)} : \Omega \to \mathcal{X}^{\mathbb{N}}$ defined by

$$S^{(p)} \triangleq (S_n \in S : Y(S_n) = 1),$$

where $Y(S_n)$ is an independent indicator for the retention of each point S_n and $\mathbb{E}[Y(S_n) | S_n] = p(S_n)$.

Theorem 1.6. The thinning of a Poisson point process $S : \Omega \to X^{\mathbb{N}}$ of intensity measure $\Lambda : \mathcal{B}(X) \to \mathbb{R}_+$ with the retention probability function $p : X \to [0,1]$, yields a Poisson point process $S^{(p)} : \Omega \to X^{\mathbb{N}}$ of intensity measure $\Lambda^{(p)} : \mathcal{B}(X) \to \mathbb{R}_+$ defined by

$$\Lambda^{(p)}(A) \triangleq \int_A p(x) d\Lambda(x), \text{ for all bounded } A \in \mathcal{B}(\mathfrak{X}).$$

Proof. Let $A \in \mathcal{B}(\mathcal{X})$ be a bounded Boreal measurable set, and let $f : \mathcal{X} \to \mathbb{R}_+$ be a non-negative function. Let $N^{(p)}$ be the associated counting process to the thinned point process $S^{(p)}$. Hence, for any bounded set $A \in \mathcal{B}(\mathcal{X})$, we have $N^{(p)}(A) = \sum_{S_i \in S \cap A} \mathcal{Y}(S_i)$. That is,

$$dN^{(p)}(x) = \sum_{i \in \mathbb{N}} \delta_x \mathbb{1}_{\{x=S_i\}} Y(S_i).$$

Therefore, for any non-negative function $g(x) = f(x) \mathbb{1}_{\{x \in A\}}$, we can write

$$\int_{x \in \mathcal{X}} g(x) dN^{(p)}(x) = \int_{x \in A} f(x) dN^{(p)}(x) = \sum_{S_i \in A} f(S_i) Y(S_i).$$

We can write the Laplace functional of the thinned point process $S^{(p)}$ for the non-negative function $g(x) = f(x) \mathbb{1}_{\{x \in A\}}$, as

$$\mathcal{L}_{S^{(p)}}(g) = \mathbb{E}\left[\mathbb{E}\left[\exp\left(-\int_{A} f(x)dN^{p}(x)\right) \mid N(A)\right]\right] = \sum_{n \in \mathbb{Z}_{+}} P\{N(A) = n\}\prod_{i=1}^{n} \mathbb{E}\left[-f(S_{i})Y(S_{i}) \mid S_{i} \in A\right].$$

Here, we denote the points of the point process in subset *A* as $S \cap A$. The first equality follows from the definition of Laplace functional and taking nested expectations. Second equality follows from the fact that the distribution of all points of a Poisson point process are *i.i.d.*. Since *Y* is a Bernoulli process independent of the underlying process *S* with $\mathbb{E}[Y(S_i)] = p(S_i)$, we get

$$\mathbb{E}\left[e^{-f(S_i)Y(S_i)}\middle|S_i\in S\cap A\right] = \mathbb{E}\left[e^{-f(S_i)}p(S_i) + (1-p(S_i))\middle|S_i\in S\cap A\right].$$

From the distribution $\frac{\Lambda'(x)}{\Lambda(A)}$ for $x \in S \cap A$ for the Poisson point process *S*, we get

$$\mathcal{L}_{S^{(p)}}(g) = e^{-\Lambda(A)} \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \left(\int_A (p(x)e^{-f(x)} + (1-p(x))d\Lambda(x) \right)^n = \exp\left(-\int_{\mathcal{X}} (1-e^{-g(x)})p(x)d\Lambda(x) \right).$$

Result follows from taking increasing sequences of sets $A_k \uparrow \mathfrak{X}$ and monotone convergence theorem. \Box