Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ is a **counting process** if

- 1. $N_0 = 0$, and
- 2. for each $\omega \in \Omega$, the sample path $N(\omega) : \mathbb{R}_+ \to \mathbb{Z}_+$ is non-decreasing, integer valued, and right continuous function of time $t \in \mathbb{R}_+$.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as shown in Figure 1. A simple counting process has the unit jump size almost surely. General point processes in higher dimension don't have any inter-arrival time interpretation.

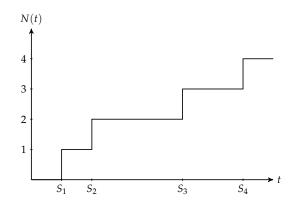


Figure 1: Sample path of a simple counting process.

Lemma 1.1. A counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ has finitely many jumps in a finite interval (0,t] almost surely.

The points of discontinuity are also called the arrival instants of the counting process N. The nth arrival instant is a random variable denoted $S_n : \Omega \to \mathbb{R}_+$, defined inductively as

$$S_0 \triangleq 0$$
, $S_n \triangleq \inf\{t \geqslant 0 : N_t \geqslant n\}$, $n \in \mathbb{N}$.

The **inter arrival time** between (n-1)th and nth arrival is denoted by X_n and written as $X_n \triangleq S_n - S_{n-1}$. For a simple point process, we have

$$P\{X_n = 0\} = P\{X_n \le 0\} = 0.$$

Lemma 1.2. Simple counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ and arrival process $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ are inverse processes, i.e.

$${S_n \leqslant t} = {N_t \geqslant n}.$$

Proof. Let $\omega \in \{S_n \leq t\}$, then $N_{S_n} = n$ by definition. Since N is a non-decreasing process, we have $N_t \geqslant N_{S_n} = n$. Conversely, let $\omega \in \{N_t \geqslant n\}$, then it follows from definition that $S_n \leq t$.

Corollary 1.3. For arrival instants $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ associated with a counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ we have $\{S_n \leqslant t, S_{n+1} > t\} = \{N_t = n\}$ for all $n \in \mathbb{Z}_+$ and $t \in \mathbb{R}_+$.

Proof. It is easy to see that $\{S_{n+1} > t\} = \{S_{n+1} \le t\}^c = \{N_t \ge n+1\}^c = \{N_t < n+1\}$. Hence,

$$\{N_t = n\} = \{N_t \ge n, N_t < n+1\} = \{S_n \le t, S_{n+1} > t\}.$$

Lemma 1.4. Let $F_n(x)$ be the distribution function for S_n , then $P_n(t) \triangleq P\{N_t = n\} = F_n(t) - F_{n+1}(t)$.

Proof. It suffices to observe that following is a union of disjoint events,

$${S_n \leqslant t} = {S_n \leqslant t, S_{n+1} > t} \cup {S_n \leqslant t, S_{n+1} \leqslant t}.$$

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with a simple Poisson point process $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ is Markov.

Proof. We define the event space $\mathcal{F}_t \triangleq \sigma(N_s : s \leqslant t)$ as the history of the process until time $t \in \mathbb{R}_+$. Then, from the independent increment property of Poisson processes, we have for any historical event $H_s \in \mathcal{F}_s$

$$P(\{N_t = n\} \mid H_s \cap \{N_s = k\}) = P(\{N_t - N_s = n - k\} \mid H_s \cap \{N_s = k\}) = P(\{N_t = n\} \mid \{N_s = k\}).$$

For a homogeneous Poisson point process, the process is homogeneously Markov with $P(\{N_t = n\} \mid \{N_s = k\}) = P\{N(t-s) = n-k\} = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{n-k}}{(n-k)!}$.

Theorem 2.2. The counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with a simple Poisson point process $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ is strongly Markov.

Proposition 2.3. A simple counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ is a **homogeneous Poisson process** with a finite positive rate λ , iff the inter-arrival time sequence $X: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ are i.i.d. random variables with an exponential distribution of rate λ .

Proof. We first assume the *i.i.d.* exponentially distributed inter-arrival times to show that for the simple counting process N and each positive real $t \in \mathbb{R}_+$, the random variable N_t is Poisson with parameter λt , and hence N is homogeneous Poisson with rate λ from the equivalence ii_- in Theorem ??.

For the converse, let N_t be a simple homogeneous Poisson point process on half-line with rate λ . From equivalence iii_- in Theorem ??, we obtain for any positive integer t,

$$P\{X_1 > t\} = P\{N_t = 0\} = e^{-\lambda t}.$$

It suffices to show that inter-arrivals time sequence $X:\Omega\to\mathbb{R}_+^\mathbb{N}$ is *i.i.d.*. We can show that N is Markov process with strong Markov property. Since the sequence of ordered points $S:\Omega\to\mathbb{R}_+^\mathbb{N}$ is a sequence of stopping times for the counting process, it follows from the strong Markov property of this process that $(N_{S_n+t}-N_{S_n}:t\geqslant 0)$ is independent of $\sigma(N_s:s\leqslant S_n)$ and hence of S_n and N_{S_n} . Further, we see that

$$X_{n+1} = \inf\{t > 0 : N_{S_n+t} - N_{S_n} = 1\}.$$

It follows that $X : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ is an independent sequence. For homogeneous Poisson point process, we have $N_{S_n+t} - N_{S_n} = N_t$ in distribution, and hence X_{n+1} has same distribution as X_1 for each $n \in \mathbb{N}$.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events $\{N_t = n\}$ for $n \in \mathbb{Z}_+$. We need the following lemma that enables us to do that.

Lemma 2.4. For any finite time t > 0, a Poisson process is finite almost surely.

2

Proof. By strong law of large numbers, we have

$$\lim_{n\to\infty} \frac{S_n}{n} = E[X_1] = \frac{1}{\lambda} \quad \text{a.s.}$$

Fix t>0 and we define a sample space subset $M=\{\omega\in\Omega:N(\omega,t)=\infty\}$. For any $\omega\in M$, we have $S_n(\omega)\leqslant t$ for all $n\in\mathbb{N}$. This implies $\limsup_n\frac{S_n}{n}=0$ and $\omega\notin\{\lim_n\frac{S_n}{n}=\frac{1}{\lambda}\}$. Hence, the probability measure for set M is zero.

2.1 Distribution functions

Lemma 2.5. Moment generating function of arrival times S_n is

$$M_{S_n}(t) = \mathbb{E}[e^{tS_n}] = egin{cases} rac{\lambda^n}{(\lambda - t)^n}, & t < \lambda \ \infty, & t \geqslant \lambda. \end{cases}$$

Lemma 2.6. Distribution function of S_n is given by $F_n(t) \triangleq P\{S_n \leqslant t\} = 1 - e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!}$.

Theorem 2.7. Density function of S_n is Gamma distributed with parameters n and λ . That is,

$$f_n(s) = \frac{\lambda(\lambda s)^{n-1}}{(n-1)!}e^{-\lambda s}.$$

Theorem 2.8. For each t > 0, the distribution of Poisson process N_t with parameter λ is given by

$$P\{N_t = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

Further, $\mathbb{E}[N_t] = \lambda t$, explaining the rate parameter λ for Poisson process.

Proof. Result follows from density of S_n and recognizing that $P_n(t) = F_n(t) - F_{n+1}(t)$.

Corollary 2.9. Distribution of arrival times S_n is

$$F_n(t) = \sum_{i \ge n} P_j(t),$$

$$\sum_{n \in \mathbb{N}} F_n(t) = \mathbb{E} N_t.$$

Proof. First result follows from the telescopic sum and the second from the following observation.

$$\sum_{n\in\mathbb{N}}F_n(t)=\mathbb{E}\sum_{n\in\mathbb{N}}1\left\{N_t\geqslant n\right\}=\sum_{n\in\mathbb{N}}P\left\{N_t\geqslant n\right\}=\mathbb{E}N_t.$$

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant. This is clear from looking at the first moment $\mathbb{E}N_t = \lambda t$, which is linearly increasing in time.