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1.1 Cardinality

Definition. A set, A, is finite if there exists a bijection f : A→ {1, 2, . . . , n} for some n ∈ N.

Definition. A set, A, is countably infinite (or countable) if there exists a bijection f : A→ N.

Definition. A set that is neither finite nor countable is called uncountably infinite.

Let us now look at some examples of these definitions in action:

1. The set of even natural numbers (2N) is countable.
[Hint: Think of the mapping f : 2N→ N, given by f (i) = i/2,∀i ∈ 2N.]

2. Any subset of a countable set is either finite or countable.
[Hint: Can a subset of a countable set be uncountably infinite? Think of what this means
for the original countable set.]

3. The set of integers, Z, is countable.

Proof. Consider a mapping f : Z→ N such that

f(n) =

{
2n if n ≥ 0,
3−n if n < 0.

This map, f , is injective, which implies that the range of this mapping is a subset of N. Moreover,
since N ⊂ Z, Z can’t be finite. Hence, using point 2. above, Z is countable.

We shall now look at a lemma that will help us prove a surprising result: that Q has the same cardinality
as N.

Lemma (Cartesian Product). |N× N| = |N|

Proof. Consider the mapping f : N × N → N given by f (m,n) = 2m3n, for m,n ∈ N. Since this mapping
is injective, N× N is either finite or countable. But N× N can’t possibly be finite (why?). Hence, N× N is
countable.

This leads us to the following simple corollary:
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Corollary. A finite cartesian product of countable sets is countable.

Proof. This corollary follows from Lemma 1.1, and a simple induction argument.

Can you now use this corollary to show that Q is countable?
[Hint: Consider q ∈ Q such that q = a

b , a ∈ Z, b ∈ N. This defines a mapping from Q→ Z×N. But we know
that Z× N is countable!]

We have now established that N ∼ Z ∼ Q (where the relation ∼ is “has the same cardinality as”). We shall
now have our first encounter with an uncountably infinite set — the set R, of all real numbers.

1.1.1 The Cardinality of R

We shall look at a proof of this by Cantor (1891), for it is an interestng exercise in what is called as
“constructive proof”. But first, we must take on faith the following fact:

Fact. The set, T , of all infinite sequences of binary digits (0 or 1) is uncountably infinite.

We can then construct an injective mapping from T to R, that maps any infinite binary “string” s in T to
the real number in R whose decimal (base 10) representation after the decimal point is s. In other words,
the mapping f : T → R obeys:

f(s) = 0.s,

for any s ∈ T .

To see an example,

s = 01000 . . .
f−→ r = 0.0100 . . . =

1

100

s = 10100 . . .
f−→ r = 0.10100 . . .

Note that this is an injective mapping. Hence |R| ≥ |T |, which implies that R is uncountable.

Hence, in sum, we have that N ∼ Q ∼ Z and R is uncountable.

1.2 Review of an Exercise

We now review a question posed in class.

Question. Consider an infinite coin toss experiment. The sample space Ω = {H,T}N. Let F be the
σ-algebra generated by the events (An : n ∈ [n]), where

An := {ω ∈ Ω : ωi = H for some i ∈ [n]} , for each n ∈ N.

In other words, F = σ({An : n ∈ N}).
Define Bn :=

{
ω ∈ Ω : ωn = H, ωn−1 = (T, T, . . . , T )

}
. Show that Bn ∈ F .
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Proof. This can be seen simply from the arguments:

Bn = An \An−1,∀n ≥ 1
(

where we define A0 , φ
)

= An ∩A{
n−1.

Since An, An−1 ∈ F , it follows that Bn ∈ F .

To take a closer look at σ-algebras, consider the sample space Ω = {H,T}n for some n ∈ N (n is finite). Let
F be generated by (Ai : i ∈ [n]), where

Ai = {ω ∈ Ω : ωj = H for some j ∈ [i]} .

To see the structure of F explicitly, we will first set n = 2, hence giving us Ω = {H,T}2. We can see that

A1 = {HT,HH} ,
A2 = A1 ∪ {TH} .

Drawing a picture of these nested sets helps:

A1 = {HT,HH}

A2 \A1 = {TH}

Ω \A2 = {TT}

We can see that A1 ⊂ A2 ⊂ Ω. Further, B1 (as defined earlier) is A2 \A1 = {TH}. We can then write down
F explicitly as

F = {Ω, φ,A1, A2, {TT} , {TH} , {TT, TH} , {TT} ∪A1} .

Note that the event C2 := {ω ∈ Ω : ω2 = H} = {HH,TH} does NOT belong to F .

Remark. We can extend this observation to the setting Ω = {H,T}N. Cn, n ≥ 2 does not belong to
F = σ ({An : n ∈ N}).

1.3 Algebras and σ-algebras

In class, we saw the the definition of σ-algebras. We will now look at a simpler notion.

Definition (Algebra). Let Ω be a non-empty set. A collection A of subsets of Ω is called an algebra if

(a) Ω ∈ A,
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(b) for any A ∈ A, we have Ac ∈ A (Closure under complements),

(c) for any A,B ∈ A, we have A ∪B ∈ A (Closure under finite unions).

Exercise 1.1. Show that ∀n ∈ N,
⋃n

i=1Ai ∈ A, if Ai ∈ F , for i ∈ [n].

Exercise 1.2. Given any non-empty set A, such that A 6= Ω, what is the smallest algebra containing A.

Consider the following interesting example.

Example. Let Ω = {r ∈ Q : r ∈ [0, 1]} be the set of all rational numbers in the closed interval [0, 1].
Let (Ai ⊂ Q : i ∈ [n]) for some n ∈ N be disjoint sets and let A = ]ni=1Ai, where we use ] to denote a union
of disjoint sets.
Given that for all i ∈ [n], ai, bi belong to the set Q, and ai ≤ bi, and ai, bi ∈ [0, 1], the disjoint sets Ai are
defined as to be either one of the following:

Ai =


{r ∈ Q : ai < r < bi} , or

{r ∈ Q : ai ≤ r < bi} , or

{r ∈ Q : ai < r ≤ bi} , or

{r ∈ Q : ai ≤ r ≤ bi} .

Claim. A is an algebra.

Proof. 1. It is easy to see that Ω ∈ A since we can pick n = 1, a1 = 0, b1 = 1, andA1 = {r ∈ Q : a1 ≤ r ≤ b1}.

2. For A ∈ A, we would like to show that Ac ∈ A. Can you show this?
Hint : Consider

A =
(
]i∈[K1] (ai, bi)

)⋃(
]i∈[K1+1:K2] (ai, bi]

)⋃(
]i∈[K2+1:K3] [ai, bi)

)⋃(
]i∈[K3+1:n] [ai, bi]

)
,

where K1 ≤ K2 ≤ K3 ≤ n. Try “ordering” these intervals in an “increasing” fashion and guess what
A{ must look like.

3. Suppose B = ]ni=1Ci and E = ]mj=1Dj , where Ci, i ∈ [n], Dj , j ∈ [m] are sets of the form Ai defined
earlier. Use the similar “ordering” argument and show that B ∪ E ∈ A.

Hence, A is indeed an algebra.

Since Ω is countable, we should be able to write

Ω = {r1, r2, . . .} . (Why does this hold?)

In other words,

Ω = ∪ni=1{ri}

where {ri} are singleton sets that are in A. But in this above form, it looks like Ω /∈ A!

This motivates the definition of σ-algebra, to include countable unions.

Example 1.3 (Algebra that is not a σ-algebra). Let Ω = R. L is the collection of finite disjoint unions of
intervals of the form (−∞, a] , (a, b] , (b,∞) , φ,R. This is not a sigma algebra since the countable union of(
0, i−1i

]
, i ∈ N, is (0, 1), which does NOT belong to L.
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1.4 Limits of Sets

In class, we saw the following definitions of certain kinds of limits associated with sets An ⊂ Ω and An ∈ F :

lim sup
n→∞

An :=
⋂
n∈N

⋃
m≥n

Am, and,

lim inf
n→∞

An :=
⋃
n∈N

⋂
m≥n

Am.

Now as an exercise, can you prove that both lim supn→∞ and lim infn→∞ belong to F?
Hint : This crucially depends on the countable unions property of a σ-algebra.

Let us now interpret the two limit sets defined above.

1. Consider
A =

⋂
n∈N

⋃
m≥n

Am,

and let En :=
⋃

m≥n
Am. We now see that the following sequence of assertions holds:

If ω ∈ A⇒ ω ∈ En, ∀n ∈ N
⇒ ω ∈ ∪∞m=1Am, ω ∈ ∪∞m=2Am, and so on.

⇒ ∃n1 ≥ 1 s.t. ω ∈ An1,∃n1 ≥ 2 s.t. ω ∈ An2, and so on.

⇒ ω occurs in infinitely many An.

Hence, the set A :=
⋂

n∈N

⋃
m≥n

Am is called An infinitely often or An i.o.

2. Let us now look at the second limit set,

B :=
⋃
n∈N

⋂
m≥n

Am,

and define Fn :=
⋂

m≥n
An.

If ω ∈ B ⇒ ω belongs to at least one of the Fns

⇒ ∃n0 ∈ N s.t. ω ∈ Fn0

⇒ ∃n0 s.t. ω ∈ ∩m≥n0Am

⇒ ω occurs in all Ams beyond a fixed n0 ∈ N.

This leads us to understand that ω occurs in all but finitely many Ans. Hence B is called
all but finitely many Ans set.

We will see more about the sets A and B as we progress in the course.

1.5 Continuity of Probability

Let (Ω,F ,P) be a given probability space.
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Recall that if f is a continuous function over the reals, i.e., f : R→ R is continuous, then for any sequence
of real numbers {xn}n≥1 s.t. lim

n→∞
xn = x,

lim
n→∞

f (xn) = f
(

lim
n→∞

xn

)
= f (x)

Remark. A quick point to note about the limits of real sequences is that when we say that limn→∞ xn = x,
we mean that:

∀ε > 0, there exists an N ≡ N (ε) such that |xn − x| ≤ ε, ∀n ≥ N (ε) .

This means that, beyond a certain N , which could depend on ε, the xns are at worst ε-far away
from the limit x.

It is in this spirit that we saw the notion of continuity of probability.

Here, if we have an increasing sequence of sets (An ∈ F)n∈N, i.e., An ⊆ An+1 ⊆ An+2 ⊆ . . ., whose limit is
A =

⋃
n∈N

An, then

P (A) = P
(

lim
n→∞

An

)
= lim

n→∞
P (An) .

Exercise 1.4. For the case when Ans are increasing, try showing that lim infn→∞An = lim supn→∞An = A.
[Hint: We know that lim infn→∞An =

⋃
n∈N

⋂
m≥n

Am =
⋃

n∈N
An = A. Now use the fact that

lim supn→∞An ⊂
⋃
k∈N

Ak = A, to show that lim supn→∞An = A.]

In class, we had seen an equivalent notion for decreasing sets, i.e., if A1 ⊇ A2 ⊇ A3 ⊇ . . ., then

P

(⋂
n∈N

An

)
= P

(
lim
n→∞

An

)
= lim

n→∞
P (An) .

Let us see an example of this in action

Example. Let Ω = [0, 1] , F = B ([0, 1]), and P ([a, b]) = P ([a, b]) = P ((a, b]) = P ([a, b)) = b − a for
a, b ∈ [0, 1] , a ≤ b (this is called the Lebesgue measure).

Let Bn =
[
0, n

n+1

]
, n ∈ N. What is limn→∞ P (Bn)?

Note. Any question in probability must begin with a complete description of the underlying probability
space (Ω,F ,P).

Solution: Since the Bns form an increasing sequence of sets,

lim
n→∞

Bn =
⋃
n∈N

Bn.

Hence,

lim
n→∞

P (Bn) = P
(

lim
n→∞

Bn

)
(by the continuity of probability)

= P ([0, 1))

= 1.
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Likewise, let Cn =
[
0, 1

n

)
, for n ∈ N. This is a decreasing sequence of sets. Then,

lim
n→∞

P (Cn) = P
(

lim
n→∞

Cn

)
= 0,

since the singleton has measure zero, i.e., P ({0}) = 0.

Exercise 1.5 (Supplementary Exercise on σ-algebras). Let E,Ω be non-empty sets. For a function f : Ω→
E and B ⊆ E, we can define the pre-image of set B for the map f as

f−1 (B) := {ω ∈ Ω : f (ω) ∈ B} .

Suppose E is a σ-algebra of subsets of E. Then, show that the following collection of sets is a σ-algebra of
subsets of Ω:

F :=
{
A ⊆ Ω : A = f−1 (B) , B ∈ E

}
.


