E2:202 Random Processes		Aug 2020
Tutorial 1: October 9		
Lecturer: Parimal Parag	TA: Arvind	Scribes: Krishna Chaythanya KV, Arvind

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Cardinality

Definition. A set, A, is *finite* if there exists a bijection $f: A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition. A set, A, is countably infinite (or countable) if there exists a bijection $f : A \to \mathbb{N}$.

Definition. A set that is neither finite nor countable is called *uncountably infinite*.

Let us now look at some examples of these definitions in action:

- 1. The set of even natural numbers $(2\mathbb{N})$ is countable. [<u>Hint</u>: Think of the mapping $f : 2\mathbb{N} \to \mathbb{N}$, given by $f(i) = i/2, \forall i \in 2\mathbb{N}$.]
- Any subset of a countable set is either finite or countable.
 [<u>Hint</u>: Can a subset of a countable set be uncountably infinite? Think of what this means for the original countable set.]
- 3. The set of integers, \mathbb{Z} , is countable.

Proof. Consider a mapping $f : \mathbb{Z} \to \mathbb{N}$ such that

 $f(n) = \begin{cases} 2^n & \text{if } n \ge 0, \\ 3^{-n} & \text{if } n < 0. \end{cases}$

This map, f, is injective, which implies that the range of this mapping is a *subset* of \mathbb{N} . Moreover, since $\mathbb{N} \subset \mathbb{Z}$, \mathbb{Z} can't be finite. Hence, using point 2. above, \mathbb{Z} is *countable*.

We shall now look at a lemma that will help us prove a surprising result: that \mathbb{Q} has the same cardinality as \mathbb{N} .

Lemma (Cartesian Product). $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

Proof. Consider the mapping $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $f(m,n) = 2^m 3^n$, for $m, n \in \mathbb{N}$. Since this mapping is injective, $\mathbb{N} \times \mathbb{N}$ is either finite or countable. But $\mathbb{N} \times \mathbb{N}$ can't possibly be finite (why?). Hence, $\mathbb{N} \times \mathbb{N}$ is countable.

This leads us to the following simple corollary:

Corollary. A <u>finite</u> cartesian product of countable sets is *countable*.

Proof. This corollary follows from Lemma 1.1, and a simple induction argument.

Can you now use this corollary to show that \mathbb{Q} is countable?

[<u>Hint</u>: Consider $q \in \mathbb{Q}$ such that $q = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{N}$. This defines a mapping from $\mathbb{Q} \to \mathbb{Z} \times \mathbb{N}$. But we know that $\mathbb{Z} \times \mathbb{N}$ is countable!]

We have now established that $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$ (where the relation \sim is "has the same cardinality as"). We shall now have our first encounter with an *uncountably infinite* set — the set \mathbb{R} , of all real numbers.

1.1.1 The Cardinality of \mathbb{R}

We shall look at a proof of this by Cantor (1891), for it is an interesting exercise in what is called as "constructive proof". But first, we must take on faith the following fact:

Fact. The set, T, of all infinite sequences of binary digits (0 or 1) is uncountably infinite.

We can then construct an *injective* mapping from T to \mathbb{R} , that maps any infinite binary "string" \underline{s} in T to the real number in \mathbb{R} whose decimal (base 10) representation after the decimal point is \underline{s} . In other words, the mapping $f: T \to \mathbb{R}$ obeys:

f(s) = 0.s,

for any $s \in T$.

To see an example,

$$\underline{s} = 01000 \dots \xrightarrow{f} r = 0.0100 \dots = \frac{1}{100}$$
$$\underline{s} = 10100 \dots \xrightarrow{f} r = 0.10100 \dots$$

Note that this is an injective mapping. Hence $|\mathbb{R}| \geq |T|$, which implies that \mathbb{R} is uncountable.

Hence, in sum, we have that $\mathbb{N}\sim\mathbb{Q}\sim\mathbb{Z}$ and \mathbb{R} is uncountable.

1.2 Review of an Exercise

We now review a question posed in class.

Question. Consider an infinite coin toss experiment. The sample space $\Omega = \{H, T\}^{\mathbb{N}}$. Let \mathcal{F} be the σ -algebra generated by the events $(A_n : n \in [n])$, where

 $A_n := \{ \omega \in \Omega : \omega_i = H \text{ for some } i \in [n] \}, \text{ for each } n \in \mathbb{N}.$

In other words, $\mathcal{F} = \sigma(\{A_n : n \in \mathbb{N}\}).$ Define $B_n \coloneqq \{\omega \in \Omega : \omega_n = H, \, \omega^{n-1} = (T, T, \dots, T)\}$. Show that $B_n \in \mathcal{F}.$

Proof. This can be seen simply from the arguments:

$$B_n = A_n \setminus A_{n-1}, \forall n \ge 1 \text{ (where we define } A_0 \triangleq \phi \text{)}$$
$$= A_n \cap A_{n-1}^{\complement}.$$

Since $A_n, A_{n-1} \in \mathcal{F}$, it follows that $B_n \in \mathcal{F}$.

To take a closer look at σ -algebras, consider the sample space $\Omega = \{H, T\}^n$ for some $n \in \mathbb{N}$ (n is finite). Let \mathcal{F} be generated by $(A_i : i \in [n])$, where

$$A_i = \{ \omega \in \Omega : \omega_j = H \text{ for some } j \in [i] \}.$$

To see the structure of \mathcal{F} explicitly, we will first set n = 2, hence giving us $\Omega = \{H, T\}^2$. We can see that

$$A_1 = \{HT, HH\},\$$
$$A_2 = A_1 \cup \{TH\}.$$

Drawing a picture of these nested sets helps:

We can see that $A_1 \subset A_2 \subset \Omega$. Further, B_1 (as defined earlier) is $A_2 \setminus A_1 = \{TH\}$. We can then write down \mathcal{F} explicitly as

$$\mathcal{F} = \{\Omega, \phi, A_1, A_2, \{TT\}, \{TH\}, \{TT, TH\}, \{TT\} \cup A_1\}$$

Note that the event $C_2 := \{ \omega \in \Omega : \omega_2 = H \} = \{ HH, TH \}$ does NOT belong to \mathcal{F} .

Remark. We can extend this observation to the setting $\Omega = \{H, T\}^{\mathbb{N}}$. $C_n, n \geq 2$ does not belong to $\mathcal{F} = \sigma(\{A_n : n \in \mathbb{N}\}).$

1.3 Algebras and σ -algebras

In class, we saw the the definition of σ -algebras. We will now look at a simpler notion.

Definition (Algebra). Let Ω be a non-empty set. A collection \mathcal{A} of subsets of Ω is called an *algebra* if

(a)
$$\Omega \in \mathcal{A}$$
,

- (b) for any $A \in \mathcal{A}$, we have $A^c \in \mathcal{A}$ (Closure under complements),
- (c) for any $A, B \in \mathcal{A}$, we have $A \cup B \in \mathcal{A}$ (Closure under *finite* unions).

Exercise 1.1. Show that $\forall n \in \mathbb{N}, \ \bigcup_{i=1}^{n} A_i \in \mathcal{A}$, if $A_i \in \mathcal{F}$, for $i \in [n]$.

Exercise 1.2. Given any non-empty set A, such that $A \neq \Omega$, what is the smallest algebra containing A.

Consider the following interesting example.

Example. Let $\Omega = \{r \in \mathbb{Q} : r \in [0,1]\}$ be the set of all rational numbers in the closed interval [0,1]. Let $(A_i \subset \mathbb{Q} : i \in [n])$ for some $n \in \mathbb{N}$ be <u>disjoint</u> sets and let $\mathcal{A} = \bigoplus_{i=1}^n A_i$, where we use \uplus to denote a union of disjoint sets.

Given that for all $i \in [n]$, a_i, b_i belong to the set \mathbb{Q} , and $a_i \leq b_i$, and $a_i, b_i \in [0, 1]$, the disjoint sets A_i are defined as to be either one of the following:

$$A_{i} = \begin{cases} \{r \in \mathbb{Q} : a_{i} < r < b_{i}\}, & \text{or} \\ \{r \in \mathbb{Q} : a_{i} \le r < b_{i}\}, & \text{or} \\ \{r \in \mathbb{Q} : a_{i} < r \le b_{i}\}, & \text{or} \\ \{r \in \mathbb{Q} : a_{i} \le r \le b_{i}\}. \end{cases}$$

Claim. \mathcal{A} is an algebra.

Proof. 1. It is easy to see that $\Omega \in \mathcal{A}$ since we can pick n = 1, $a_1 = 0$, $b_1 = 1$, and $A_1 = \{r \in \mathbb{Q} : a_1 \le r \le b_1\}$.

2. For $A \in \mathcal{A}$, we would like to show that $A^c \in \mathcal{A}$. Can you show this? *Hint*: Consider

$$A = \left(\uplus_{i \in [K_1]} (a_i, b_i) \right) \bigcup \left(\bigsqcup_{i \in [K_1 + 1:K_2]} (a_i, b_i] \right) \bigcup \left(\bigsqcup_{i \in [K_2 + 1:K_3]} [a_i, b_i) \right) \bigcup \left(\bigsqcup_{i \in [K_3 + 1:n]} [a_i, b_i] \right),$$

where $K_1 \leq K_2 \leq K_3 \leq n$. Try "ordering" these intervals in an "increasing" fashion and guess what A^{\complement} must look like.

3. Suppose $B = \bigoplus_{i=1}^{n} C_i$ and $E = \bigoplus_{j=1}^{m} D_j$, where $C_i, i \in [n], D_j, j \in [m]$ are sets of the form A_i defined earlier. Use the similar "ordering" argument and show that $B \cup E \in \mathcal{A}$.

Hence, \mathcal{A} is indeed an algebra.

Since Ω is countable, we should be able to write

 $\Omega = \{r_1, r_2, \ldots\}.$ (Why does this hold?)

In other words,

$$\Omega = \bigcup_{i=1}^{n} \{r_i\}$$

where $\{r_i\}$ are singleton sets that are in \mathcal{A} . But in this above form, it looks like $\Omega \notin \mathcal{A}$!

This motivates the definition of σ -algebra, to include countable unions.

Example 1.3 (Algebra that is not a σ -algebra). Let $\Omega = \mathbb{R}$. \mathcal{L} is the collection of *finite* disjoint unions of intervals of the form $(-\infty, a], (a, b], (b, \infty), \phi, \mathbb{R}$. This is not a sigma algebra since the *countable* union of $(0, \frac{i-1}{i}], i \in \mathbb{N}$, is (0, 1), which does NOT belong to \mathcal{L} .

1.4 Limits of Sets

In class, we saw the following definitions of certain kinds of limits associated with sets $A_n \subset \Omega$ and $A_n \in \mathcal{F}$:

$$\limsup_{n \to \infty} A_n \coloneqq \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m, \text{ and,}$$
$$\liminf_{n \to \infty} A_n \coloneqq \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m.$$

Now as an exercise, can you prove that both $\limsup_{n\to\infty}$ and $\liminf_{n\to\infty}$ belong to \mathcal{F} ? *Hint*: This crucially depends on the <u>countable unions</u> property of a σ -algebra.

Let us now interpret the two limit sets defined above.

1. Consider

$$A = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m,$$

and let $E_n \coloneqq \bigcup_{m \ge n} A_m$. We now see that the following sequence of assertions holds:

If
$$\omega \in A \Rightarrow \omega \in E_n$$
, $\forall n \in \mathbb{N}$
 $\Rightarrow \omega \in \bigcup_{m=1}^{\infty} A_m$, $\omega \in \bigcup_{m=2}^{\infty} A_m$, and so on.
 $\Rightarrow \exists n_1 \ge 1 \text{ s.t. } \omega \in A_{n1}, \exists n_1 \ge 2 \text{ s.t. } \omega \in A_{n2}$, and so on.
 $\Rightarrow \omega \text{ occurs in infinitely many } A_n$.

Hence, the set $A \coloneqq \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m$ is called <u> A_n infinitely often</u> or <u> A_n i.o.</u>

2. Let us now look at the second limit set,

$$B \coloneqq \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m,$$

and define $F_n := \bigcap_{m \ge n} A_n$.

If $\omega \in B \Rightarrow \omega$ belongs to at least one of the $F_n s$ $\Rightarrow \exists n_0 \in \mathbb{N} \text{ s.t. } \omega \in F_{n_0}$ $\Rightarrow \exists n_0 \text{ s.t. } \omega \in \cap_{m \ge n_0} A_m$ $\Rightarrow \omega \text{ occurs in all } A_m s \text{ beyond a fixed } n_0 \in \mathbb{N}.$

This leads us to understand that ω occurs in **all but finitely many** A_n s. Hence B is called **all but finitely many** A_n s set.

We will see more about the sets A and B as we progress in the course.

1.5 Continuity of Probability

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space.

Recall that if f is a continuous function over the reals, i.e., $f : \mathbb{R} \to \mathbb{R}$ is continuous, then for any sequence of real numbers $\{x_n\}_{n\geq 1}$ s.t. $\lim_{n\to\infty} x_n = x$,

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(x)$$

Remark. A quick point to note about the limits of real sequences is that when we say that $\lim_{n\to\infty} x_n = x$, we mean that:

 $\forall \epsilon > 0$, there exists an $N \equiv N(\epsilon)$ such that $|x_n - x| \le \epsilon$, $\forall n \ge N(\epsilon)$.

This means that, beyond a certain N, which could depend on ϵ , the x_n s are at worst ϵ -far away from the limit x.

It is in this spirit that we saw the notion of *continuity of probability*.

Here, if we have an increasing sequence of sets $(A_n \in \mathcal{F})_{n \in \mathbb{N}}$, i.e., $A_n \subseteq A_{n+1} \subseteq A_{n+2} \subseteq \ldots$, whose limit is $A = \bigcup_{n \in \mathbb{N}} A_n$, then

$$\mathbb{P}\left(A\right) = \mathbb{P}\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}\left(A_n\right).$$

Exercise 1.4. For the case when A_n s are increasing, try showing that $\liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n = A$. [<u>Hint</u>: We know that $\liminf_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}} \bigcap_{m\geq n} A_m = \bigcup_{n\in\mathbb{N}} A_n = A$. Now use the fact that $\limsup_{n\to\infty} A_n \subset \bigcup_{k\in\mathbb{N}} A_k = A$, to show that $\limsup_{n\to\infty} A_n = A$.]

In class, we had seen an equivalent notion for decreasing sets, i.e., if $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$, then

$$\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right) = \mathbb{P}\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}\mathbb{P}\left(A_n\right).$$

Let us see an example of this in action

Example. Let $\Omega = [0,1]$, $\mathcal{F} = \mathcal{B}([0,1])$, and $\mathbb{P}([a,b]) = \mathbb{P}([a,b]) = \mathbb{P}((a,b]) = \mathbb{P}([a,b]) = b - a$ for $a, b \in [0,1], a \leq b$ (this is called the *Lebesgue measure*). Let $B_n = \left[0, \frac{n}{n+1}\right], n \in \mathbb{N}$. What is $\lim_{n \to \infty} \mathbb{P}(B_n)$?

Note. Any question in probability must begin with a complete description of the underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Solution: Since the B_n s form an increasing sequence of sets,

$$\lim_{n \to \infty} B_n = \bigcup_{n \in \mathbb{N}} B_n.$$

Hence,

$$\lim_{n \to \infty} \mathbb{P}(B_n) = \mathbb{P}\left(\lim_{n \to \infty} B_n\right) \text{ (by the continuity of probability)}$$
$$= \mathbb{P}\left([0, 1)\right)$$
$$= 1.$$

Likewise, let $C_n = [0, \frac{1}{n})$, for $n \in \mathbb{N}$. This is a decreasing sequence of sets. Then,

$$\lim_{n \to \infty} \mathbb{P}(C_n) = \mathbb{P}\left(\lim_{n \to \infty} C_n\right) = 0,$$

since the singleton has *measure* zero, i.e., $\mathbb{P}(\{0\}) = 0$.

Exercise 1.5 (Supplementary Exercise on σ -algebras). Let E, Ω be non-empty sets. For a function $f : \Omega \to E$ and $B \subseteq E$, we can define the pre-image of set B for the map f as

$$f^{-1}(B) \coloneqq \{\omega \in \Omega : f(\omega) \in B\}.$$

Suppose \mathcal{E} is a σ -algebra of subsets of E. Then, show that the following collection of sets is a σ -algebra of subsets of Ω :

$$\mathcal{F} \coloneqq \left\{ A \subseteq \Omega : A = f^{-1}(B), B \in \mathcal{E} \right\}.$$