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2.1 Independence and Conditional Probability

Let us first recall the definition of independent events.

Let (Ω,F ,P) be a given probability space [The mandatory preamble]

Definition (Independence of Events). A family of events {Ai : i ∈ I} s.t. Ai ∈ F , ∀i ∈ I is said to be
independent if for any finite set J ⊆ I,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai) .

Further, we had seen the following definition of conditional independence with respect to a given event
C ∈ F :

Definition (Conditional Independence of Events). A family of events {Ai ∈ F : i ∈ I} is said to be condi-
tionally independent given an event C ∈ F such that P (C) > 0, if for any finite set J ⊆ I,

P

(⋂
i∈J

Ai

∣∣∣∣∣C
)

=
∏
i∈J

P (Ai|C)

Let us take a look at some examples of these in action:

Example (Independence ; Conditional Independence). Let us consider the roll of two dice. Then, Ω =

{1, 2, . . . , 6}2 ,F = 2Ω,P ({(i, j)}) = 1/36∀ (i, j) ∈ Ω.

• Let A be the event that the first roll results in a 3.

• Let B be the event that the second roll results in a 1.

• Let C be the event that the sum of the two rolls is even.

From the definition of the probability measure on the event space, it is immediate that A,B are independent
events, i.e.,

P (A ∩B) = P(A)P(B).
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However, it is NOT true that A,B are conditionally independent given C. To see this,

P (A ∩B | C) =
P (A ∩B)

P (C)

P (A)P (B)

P (C)
=

1/36

1/2
=

1

18

On the other hand,

P (A | C)P (B | C) =
P (A ∩ C)P (B ∩ C)

(P (C))
2

=
1
12 ·

1
12(

1
2

)2 =
1

36
6= P (A ∩B | C) .

To see an example where this conditional independence does not imply independence of events, consider the
experiment designed as follows:

Example (Conditional Independence ; Independence). I have two coins C1, C2 where C1 is fair (unbiased)
and C2 shows heads with probability 1. I choose a coin uniformly at random from C1 and C2 and toss it
twice.
Question: What are Ω,F and P, here? Is it that Ω = {H,T}2 and F = 2Ω? Or does this lead to some
difficulty in writing down the probability measure?
Define the following events:

• A := {First toss results in a H}

• B := {Second toss results in a H}

• C := {Coin C1 is selected}

It can be easily be seen that P (A ∩B | C) = P (A | C)P (B | C). However, it must be noted that in this
case, events A and B are not independent. To see this, carry out the following computations in a simple
exercise:

P (A) = 3/4; P (B) = 3/4; P (A ∩B) = 5/8 6= P (A)P (B) = 9/16.

The next example is based on a statistical model known as “Polya’s Urn Model”. This finds applicaton in
population genetics, image recognition, and linguistic analysis.

Example. An urn contains r red balls and b blue balls. A ball is chosen at random from the urn, its colour
is noted, and it is returned back to the urn along with d more balls of the same colour. This is repeated
indefinitely.
Let us assume a suitably defined (Ω,F ,P).

1. What is the probability that the second ball is blue?
Solution: Let B2 be the event that the second ball drawn is blue, and let B1be the even that the first
ball drawn is blue. By an application of the law of total probability,

P (B1) = P (B2 | B1)P (B1) + P
(
B2 | B{

1

)
P
(
B{

1

)
=

(
b

b+ r + d

)(
r

b+ r

)
+

(
b+ d

b+ r + d

)
+

(
b

b+ r

)
=

b

b+ r
[This is not dependent on d!]
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Remark. In general, let Bn, for n ≥ 1, n ∈ N be the even that the nth ball drawn is blue. Using some
sophisticated analysis, it can be shown that

P (Bn) = P (B1) =
b

b+ r
∀n ≥ 1, n ∈ N.

2. Find the probability that the first ball is blue given thath the n subsequent balls drawn are all blue.
Find the limit of this probability as n tends to ∞.
Solution: Let us make use of notation from the previous remark. Now,

P (B1 | B2 ∩B3 ∩ . . . Bn) =
P (B1 ∩B2 ∩B3 ∩ . . . Bn)

P (B2 ∩B3 ∩ . . . Bn)

=

(
b
b+r

)(
b+d
b+r+d

)
· · ·
(

b+nd
b+r+nd

)
(

b
b+r

)(
b+d
b+r+d

)
· · ·
(

b+(n−1)d
b+r+(n−1)d

)
· 1

=
b+ nd

b+ r + nd
.

Thus, we have that limn→∞ P (B1 | B2 ∩B3 ∩ . . . ∩Bn) = 1.

Exercise 2.1. Give a probability space (Ω,F ,P), let {An}n≥1 ∈ F , and {Bn}n≥1 ∈ F such that A1 ⊆ A2 ⊆
. . ., and B1 ⊆ B2 ⊆ . . ., and B =

⋃
n∈NBn A =

⋃
n∈NAn. Let P (B) > 0 and P (Bn) > 0 ∀n ∈ N. Show that

(a) lim
n→∞

P (An | B) = P (A | B).

(b) lim
n→∞

P (A | Bn) = P (A | B).

2.2 Random Variables

Let (Ω,F ,P) be a given probability space.

Definition. A random variable X : Ω→ R is a real-valued function that maps elements in Ω to R such that
for each x ∈ R, the event

A (x) := {ω ∈ Ω : X (ω) ≤ x} ∈ F .

A picture helps cement this idea:

(Ω,F) (R,B (R))

A (x) (−∞, x]

X

Inverse Image

In other words, in order for X to be an F-measurable RV, the inverse image (this is a set inverse!) of
(−∞, x], called A (x) ⊂ Ω, must belong to F .

Let us look at some examples now.

Example. 1. Ω = {H,T}2 , F = 2Ω

X : Ω→ R is given by:
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• X (HH) = 1,
• X (HT ) = 1,
• X (TH) = 0, and
• X (TT ) = 0.

X is the RV “heads on the first toss”.

HH

HT

TT

TH

1

0

Ω R

We then have

X−1 (R) = Ω, and

X−1 ((−∞, x]) =


φ, if x < 0,

{HH,HT} , if 0 ≤ x < 1,

Ω, if x ≥ 1.

Note that X is an F-measurable RV

Ω = 1, 2, 3,F = Ω, φ, 1, 2, 3
We define X as follows

X(1) = 0, X(2) = 1/2, X(3) = 1.

Pictorially, the mapping X is given below:

1

2

3

0

1/2

1

Ω R
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Now,

X−1 (R) = Ω, and

X−1 ((−∞, x]) =


φ x < 0,

{1} 0 ≤ x < 1/2,

{1, 2} , 1/2 ≤ x < 1,

Ω, x ≥ 1.

But note that X−1 ((−∞, 2/3]) = {1, 2} /∈ F .
Hence X is not F-measurable.

Example (Constructing RVs from σ-algebras). Let Ω = {1, 2, 3}

1. F = {Ω, φ}. Here, the only F-measurable RVs are constant RVs, i.e.,

X(ω) = c, ∀ω ∈ Ω, c ∈ R

2. F = {Ω, φ, {1} {2, 3}}.
Here, the F-measurable RVs look like

X (ω) =

{
c1, if ω = 1,

c2, if ω ∈ {2, 3} .
for c1, c2 ∈ R.

2.2.1 Types of Random Variables, CDF, PMFs, and PDFs

Recall that the cumulative distribution function F : R→ [0, 1] satisfies

(a) for any x, y ∈ R s.t. x ≤ y, F (x) ≤ F (y),

(b) F (·) is right-continuous,

(c) lim
x→∞

F (x) = 1, and lim
x→−∞

F (x) = 0.

This definition also happens to the sufficient conditions for any function F to be a CDF.

2.2.1.1 Discrete Random Variables

1. Bernoulli Random Variables: X ∼ Ber (p).
In the above, read ∼ as “drawn according to”. p is a parameter of the distribution.

X : Ω→ {0, 1} , such that FX (x) =


0, x < 0,

1− p, 0 ≤ x < 1,

1, x ≥ 1.

Example: The outcome of a coin toss can be thought of as a Bernoulli RV, with suitably defined
p ∈ [0, 1].
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2. Poisson Random Variable: X ∼ Poi (λ), if X : Ω→ N ∪ {0} such that

PX (x) =
e−λλx

x!
, x ∈ N ∪ {0} , and

FX (x) =

x∑
k=0

e−λλk

k!
, x ∈ N ∪ {0} .

Question: Why are we writing PX (x)? Is it enough if we define the probability measure over such
singletons?
Example: The arrival process of customers in a bank can be modelled as a Poi(λ) random variable.

3. Geometric random variables: X ∼ Geo (p), if X : Ω→ N, and

PX (x) = p (1− p)x−1
, x ∈ N

FX (x) =

∞∑
k=1

p (1− p)k−1
, x ∈ N.

Exercise 2.2. Show that the RV X ∼ Geo (p) satisfies the memoryless property, i.e.,

P {X > k + n | X > n} does not depend on n.

2.2.1.2 Continuous Random Variables

Recall that we can specify a continuous random variable X by its density (probability density function, pdf),
if it exists.

1. Uniform Random Variable: X ∼ Unif ([a, b]) if X : Ω→ [a, b], and

fX (x) =

{
1
b−a , x ∈ [a, b] ,

0, o.w.

2. Exponential Random Variable: X ∼ Exp (λ) if X : Ω→ [0,∞) and

fX (x) =

{
λe−λx, x ≥ 0,

0, o.w.

Exercise 2.3. Show that the memoryless property holds for an Exp(λ) random variable X:

P {X > t+ s | X > s} = P {X > t} = e−λt.

3. Normal Random Variables: X ∼ N
(
µ, σ2

)
if X : Ω→ R and

fX (x) =
1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
, x ∈ R.

Exercise 2.4. 1. Suppose that a coin of bias p (probability of a head is p ∈ [0, 1]) is tossed once. Define
Ω and the largest possible F . Consider the events:

A = {The coin shows up heads} ,
B = {The coin shows up tails} .

Are events A and B independent?
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2. Let us modify the experiment as follows.
Let N be the RV correspnding to a random number of tosses of the coin. Further, let N ∼ Poi (λ).
Now, let X denote the number of heads in N (random) tosses, and let Y denote the number of tails.
Show (by a low of total probability argument) that:

(a) P ({X =}) = (λp)e−λp

x! , x ∈ N {0} [Hint: Try conditioning on {N = n}].

(b) P ({Y = y}) = λ(1−p)ye−λ(1−p)
y! , y ∈ N ∪ {0}.

(c) What is P ({X = x} ∩ {Y = y})?
[Hint: Notice that P ({X = x} ∩ {Y = y}) = P ({X = x} ∩ {Y = y} ∩ {N = x+ y}) ].

Exercise 2.5. Consider a continuous RV X with Ω = R and F = B (R). Show that if X and −X have the
same CDF, then

fX (x) = fX (−x) , ∀x ∈ R.

Exercise 2.6. Consider the Normal RV Y ∼ N
(
µ, σ2

)
. Can you write the density function of Z = aY + b?

Hint: Start from the CDF of Z and massage it to obtain a CDF of Y.


