Tutorial 2: October 16

Lecturer: Parimal Parag
TA: Arvind
Scribes: Krishna Chaythanya KV

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Independence and Conditional Probability

Let us first recall the definition of independent events.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space [The mandatory preamble]
Definition (Independence of Events). A family of events $\left\{A_{i}: i \in I\right\}$ s.t. $A_{i} \in \mathcal{F}, \forall i \in I$ is said to be independent if for any finite set $J \subseteq I$,

$$
\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right)
$$

Further, we had seen the following definition of conditional independence with respect to a given event $C \in \mathcal{F}$:

Definition (Conditional Independence of Events). A family of events $\left\{A_{i} \in \mathcal{F}: i \in I\right\}$ is said to be conditionally independent given an event $C \in \mathcal{F}$ such that $\mathbb{P}(C)>0$, if for any finite set $J \subseteq I$,

$$
P\left(\bigcap_{i \in J} A_{i} \mid C\right)=\prod_{i \in J} \mathbb{P}\left(A_{i} \mid C\right)
$$

Let us take a look at some examples of these in action:
Example (Independence \nRightarrow Conditional Independence). Let us consider the roll of two dice. Then, $\Omega=$ $\{1,2, \ldots, 6\}^{2}, \mathcal{F}=2^{\Omega}, \mathbb{P}(\{(i, j)\})=1 / 36 \forall(i, j) \in \Omega$.

- Let A be the event that the first roll results in a 3 .
- Let B be the event that the second roll results in a 1 .
- Let C be the event that the sum of the two rolls is even.

From the definition of the probability measure on the event space, it is immediate that A, B are independent events, i.e.,

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

However, it is NOT true that A, B are conditionally independent given C. To see this,

$$
\begin{aligned}
\mathbb{P}(A \cap B \mid C) & =\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(C)} \\
& \frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(C)}=\frac{1 / 36}{1 / 2}=\frac{1}{18}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mathbb{P}(A \mid C) \mathbb{P}(B \mid C) & =\frac{\mathbb{P}(A \cap C) \mathbb{P}(B \cap C)}{(\mathbb{P}(C))^{2}} \\
& =\frac{\frac{1}{12} \cdot \frac{1}{12}}{\left(\frac{1}{2}\right)^{2}}=\frac{1}{36} \neq \mathbb{P}(A \cap B \mid C) .
\end{aligned}
$$

To see an example where this conditional independence does not imply independence of events, consider the experiment designed as follows:

Example (Conditional Independence \nRightarrow Independence). I have two coins C_{1}, C_{2} where C_{1} is fair (unbiased) and C_{2} shows heads with probability 1 . I choose a coin uniformly at random from C_{1} and C_{2} and toss it twice.
Question: What are Ω, \mathcal{F} and \mathbb{P}, here? Is it that $\Omega=\{H, T\}^{2}$ and $\mathcal{F}=2^{\Omega}$? Or does this lead to some difficulty in writing down the probability measure?
Define the following events:

- $A:=\{$ First toss results in a $H\}$
- $B:=\{$ Second toss results in a $H\}$
- $C:=\left\{\right.$ Coin C_{1} is selected $\}$

It can be easily be seen that $\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \mathbb{P}(B \mid C)$. However, it must be noted that in this case, events A and B are not independent. To see this, carry out the following computations in a simple exercise:

$$
\mathbb{P}(A)=3 / 4 ; \mathbb{P}(B)=3 / 4 ; \mathbb{P}(A \cap B)=5 / 8 \neq \mathbb{P}(A) \mathbb{P}(B)=9 / 16
$$

The next example is based on a statistical model known as "Polya's Urn Model". This finds applicaton in population genetics, image recognition, and linguistic analysis.

Example. An urn contains r red balls and b blue balls. A ball is chosen at random from the urn, its colour is noted, and it is returned back to the urn along with d more balls of the same colour. This is repeated indefinitely.
Let us assume a suitably defined $(\Omega, \mathcal{F}, \mathbb{P})$.

1. What is the probability that the second ball is blue?

Solution: Let B_{2} be the event that the second ball drawn is blue, and let B_{1} be the even that the first ball drawn is blue. By an application of the law of total probability,

$$
\begin{aligned}
\mathbb{P}\left(B_{1}\right) & =\mathbb{P}\left(B_{2} \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)+P\left(B_{2} \mid B_{1}^{\complement}\right) \mathbb{P}\left(B_{1}^{\complement}\right) \\
& =\left(\frac{b}{b+r+d}\right)\left(\frac{r}{b+r}\right)+\left(\frac{b+d}{b+r+d}\right)+\left(\frac{b}{b+r}\right) \\
& =\frac{b}{b+r} \quad[\text { This is not dependent on d }!]
\end{aligned}
$$

Remark. In general, let B_{n}, for $n \geq 1, n \in \mathbb{N}$ be the even that the $n^{\text {th }}$ ball drawn is blue. Using some sophisticated analysis, it can be shown that

$$
\mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(B_{1}\right)=\frac{b}{b+r} \quad \forall n \geq 1, n \in \mathbb{N}
$$

2. Find the probability that the first ball is blue given thath the n subsequent balls drawn are all blue. Find the limit of this probability as n tends to ∞.
Solution: Let us make use of notation from the previous remark. Now,

$$
\begin{aligned}
\mathbb{P}\left(B_{1} \mid B_{2} \cap B_{3} \cap \ldots B_{n}\right) & =\frac{\mathbb{P}\left(B_{1} \cap B_{2} \cap B_{3} \cap \ldots B_{n}\right)}{\mathbb{P}\left(B_{2} \cap B_{3} \cap \ldots B_{n}\right)} \\
& =\frac{\left(\frac{b}{b+r}\right)\left(\frac{b+d}{b+r+d}\right) \cdots\left(\frac{b+n d}{b+r+n d}\right)}{\left(\frac{b}{b+r}\right)\left(\frac{b+d}{b+r+d}\right) \cdots\left(\frac{b+(n-1) d}{b+r+(n-1) d}\right) \cdot 1} \quad=\frac{b+n d}{b+r+n d} .
\end{aligned}
$$

Thus, we have that $\lim _{n \rightarrow \infty} \mathbb{P}\left(B_{1} \mid B_{2} \cap B_{3} \cap \ldots \cap B_{n}\right)=1$.
Exercise 2.1. Give a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left\{A_{n}\right\}_{n \geq 1} \in \mathcal{F}$, and $\left\{B_{n}\right\}_{n>1} \in \mathcal{F}$ such that $A_{1} \subseteq A_{2} \subseteq$ \ldots, and $B_{1} \subseteq B_{2} \subseteq \ldots$, and $B=\bigcup_{n \in \mathbb{N}} B_{n} A=\bigcup_{n \in \mathbb{N}} A_{n}$. Let $\mathbb{P}(B)>0$ and $\mathbb{P}\left(B_{n}\right)>0 \forall n \in \mathbb{N}$. Show that
(a) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \mid B\right)=\mathbb{P}(A \mid B)$.
(b) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A \mid B_{n}\right)=\mathbb{P}(A \mid B)$.

2.2 Random Variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space.
Definition. A random variable $X: \Omega \rightarrow \mathbb{R}$ is a real-valued function that maps elements in Ω to \mathbb{R} such that for each $x \in \mathbb{R}$, the event

$$
A(x):=\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}
$$

A picture helps cement this idea:

In other words, in order for X to be an \mathcal{F}-measurable RV, the inverse image (this is a set inverse!) of $(-\infty, x]$, called $A(x) \subset \Omega$, must belong to \mathcal{F}.

Let us look at some examples now.
Example. 1. $\Omega=\{H, T\}^{2}, \mathcal{F}=2^{\Omega}$
$X: \Omega \rightarrow \mathbb{R}$ is given by:

- $X(H H)=1$,
- $X(H T)=1$,
- $X(T H)=0$, and
- $X(T T)=0$.
X is the RV "heads on the first toss".

We then have

$$
\begin{aligned}
& X^{-1}(\mathbb{R})=\Omega, \text { and } \\
& X^{-1}((-\infty, x])=\left\{\begin{array}{l}
\phi, \text { if } x<0 \\
\{H H, H T\}, \text { if } 0 \leq x<1 \\
\Omega, \text { if } x \geq 1
\end{array}\right.
\end{aligned}
$$

Note that X is an \mathcal{F}-measurable RV
$\Omega=1,2,3, \mathcal{F}=\Omega, \phi, 1,2,3$
We define X as follows

$$
X(1)=0, \quad X(2)=1 / 2, \quad X(3)=1 .
$$

Pictorially, the mapping X is given below:

Now,

$$
\begin{aligned}
X^{-1}(\mathbb{R}) & =\Omega, \text { and } \\
X^{-1}((-\infty, x]) & =\left\{\begin{array}{l}
\phi x<0 \\
\{1\} 0 \leq x<1 / 2 \\
\{1,2\}, 1 / 2 \leq x<1 \\
\Omega, x \geq 1
\end{array}\right.
\end{aligned}
$$

But note that $X^{-1}((-\infty, 2 / 3])=\{1,2\} \notin \mathcal{F}$.
Hence X is not \mathcal{F}-measurable.
Example (Constructing RVs from σ-algebras). Let $\Omega=\{1,2,3\}$

1. $\mathcal{F}=\{\Omega, \phi\}$. Here, the only \mathcal{F}-measurable RVs are constant RVs, i.e.,

$$
X(\omega)=c, \forall \omega \in \Omega, c \in \mathbb{R}
$$

2. $\mathcal{F}=\{\Omega, \phi,\{1\}\{2,3\}\}$.

Here, the \mathcal{F}-measurable RVs look like

$$
X(\omega)=\left\{\begin{array}{l}
c_{1}, \text { if } \omega=1, \\
c_{2}, \text { if } \omega \in\{2,3\} .
\end{array} \quad \text { for } c_{1}, c_{2} \in \mathbb{R}\right.
$$

2.2.1 Types of Random Variables, CDF, PMFs, and PDFs

Recall that the cumulative distribution function $F: \mathbb{R} \rightarrow[0,1]$ satisfies
(a) for any $x, y \in \mathbb{R}$ s.t. $x \leq y, F(x) \leq F(y)$,
(b) $F(\cdot)$ is right-continuous,
(c) $\lim _{x \rightarrow \infty} F(x)=1$, and $\lim _{x \rightarrow-\infty} F(x)=0$.

This definition also happens to the sufficient conditions for any function F to be a CDF.

2.2.1.1 Discrete Random Variables

1. Bernoulli Random Variables: $X \sim \operatorname{Ber}(p)$.

In the above, read \sim as "drawn according to". p is a parameter of the distribution.

$$
X: \Omega \rightarrow\{0,1\}, \text { such that } F_{X}(x)=\left\{\begin{array}{l}
0, x<0 \\
1-p, 0 \leq x<1 \\
1, x \geq 1
\end{array}\right.
$$

Example: The outcome of a coin toss can be thought of as a Bernoulli RV, with suitably defined $\overline{p \in[0,1]}$.
2. Poisson Random Variable: $X \sim \operatorname{Poi}(\lambda)$, if $X: \Omega \rightarrow \mathbb{N} \cup\{0\}$ such that

$$
\begin{aligned}
& P_{X}(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x \in \mathbb{N} \cup\{0\}, \text { and } \\
& F_{X}(x)=\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}, x \in \mathbb{N} \cup\{0\} .
\end{aligned}
$$

Question: Why are we writing $P_{X}(x)$? Is it enough if we define the probability measure over such singletons?
Example: The arrival process of customers in a bank can be modelled as a Poi (λ) random variable.
3. Geometric random variables: $X \sim \operatorname{Geo}(p)$, if $X: \Omega \rightarrow \mathbb{N}$, and

$$
\begin{aligned}
& P_{X}(x)=p(1-p)^{x-1}, x \in \mathbb{N} \\
& F_{X}(x)=\sum_{k=1}^{\infty} p(1-p)^{k-1}, x \in \mathbb{N}
\end{aligned}
$$

Exercise 2.2. Show that the $\mathrm{RV} X \sim \operatorname{Geo}(p)$ satisfies the memoryless property, i.e.,

$$
\mathbb{P}\{X>k+n \mid X>n\} \text { does not depend on } n \text {. }
$$

2.2.1.2 Continuous Random Variables

Recall that we can specify a continuous random variable X by its density (probability density function, pdf), if it exists.

1. Uniform Random Variable: $X \sim \operatorname{Unif}([a, b])$ if $X: \Omega \rightarrow[a, b]$, and

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{b-a}, x \in[a, b] \\
0, o . w
\end{array}\right.
$$

2. Exponential Random Variable: $X \sim \operatorname{Exp}(\lambda)$ if $X: \Omega \rightarrow[0, \infty)$ and

$$
f_{X}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, x \geq 0 \\
0, \text { o.w }
\end{array}\right.
$$

Exercise 2.3. Show that the memoryless property holds for an $\operatorname{Exp}(\lambda)$ random variable X :

$$
\mathbb{P}\{X>t+s \mid X>s\}=\mathbb{P}\{X>t\}=e^{-\lambda t}
$$

3. Normal Random Variables: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if $X: \Omega \rightarrow \mathbb{R}$ and

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), x \in \mathbb{R}
$$

Exercise 2.4. 1. Suppose that a coin of bias p (probability of a head is $p \in[0,1]$) is tossed once. Define Ω and the largest possible \mathcal{F}. Consider the events:

$$
\begin{aligned}
& A=\{\text { The coin shows up heads }\} \\
& B=\{\text { The coin shows up tails }\}
\end{aligned}
$$

Are events A and B independent?
2. Let us modify the experiment as follows.

Let N be the RV correspnding to a random number of tosses of the coin. Further, let $N \sim \operatorname{Poi}(\lambda)$. Now, let X denote the number of heads in N (random) tosses, and let Y denote the number of tails. Show (by a low of total probability argument) that:
(a) $\mathbb{P}(\{X=\})=\frac{(\lambda p) e^{-\lambda p}}{x!}, x \in \mathbb{N}\{0\}$ [Hint: Try conditioning on $\{N=n\}$].
(b) $\mathbb{P}(\{Y=y\})=\frac{\lambda(1-p)^{y} e^{-\lambda(1-p)}}{y!}, y \in \mathbb{N} \cup\{0\}$.
(c) What is $\mathbb{P}(\{X=x\} \cap\{Y=y\})$?
[Hint: Notice that $\mathbb{P}(\{X=x\} \cap\{Y=y\})=\mathbb{P}(\{X=x\} \cap\{Y=y\} \cap\{N=x+y\})]$.
Exercise 2.5. Consider a continuous $\operatorname{RV} X$ with $\Omega=\mathbb{R}$ and $\mathcal{F}=\mathcal{B}(\mathbb{R})$. Show that if X and $-X$ have the same CDF, then

$$
f_{X}(x)=f_{X}(-x), \forall x \in \mathbb{R}
$$

Exercise 2.6. Consider the Normal RV $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Can you write the density function of $Z=a Y+b$? Hint: Start from the CDF of Z and massage it to obtain a CDF of Y.

