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In the earlier tutorials, we had seen discussions on when a function X : Ω → R (for a suitably defined
(Ω,F ,P)) is a random variable.
In this part, we look at functions of random variables and demonstrate a succint sufficient condition for these
functions too to be random variables.

First, let us look at simple examples:
Let (Ω,F ,P) be a given probability space, and let X : Ω→ R, Y : Ω→ R be RVs that are measurable w.r.t
F , i.e., X−1 ((∞, x]) ∈ F and Y −1 ((∞, x]) ∈ F , for any x ∈ R.

Example. We shall show that X2 : Ω→ R is also a RV

Proof. Fix an x ∈ R. Consider the set

B (x) =
{
ω ∈ Ω : X2 (ω) ≤ x

}
=
{
ω ∈ Ω : −

√
x ≤ X (ω) ≤

√
x
}

Let B1 (x) , {ω ∈ Ω : X (ω) ≤
√
x} and B2 (x) , {ω ∈ Ω : X (ω) ≤ −

√
x}. Clearly, B1 (x) ∈ F , and

B2 (x) ∈ F (Why?).
Hence B (x) = B1 (x) ∩B{

2 (x) ∈ F , for any x ∈ R. Therefore, X2 : Ω ∈ R is also a F-measurable RV.

Example. We will now show that X + Y : Ω→ R is also an F-measurable RV.

Proof. In order to show that X + Y is a RV w.r.t. (Ω,F), it suffices to show that

D (x) , {ω ∈ Ω : X (ω) + Y (ω) < x} ∈ F , for any x ∈ R.

Now, fix an arbitrary x ∈ R. Then, the fact that X (ω)+Y (ω) < x implies that there exists a rational q ∈ Q
such that X (ω) < q and Y (ω) < x− q.
Conversely, if there exists a rational q ∈ Q such that X (ω) < q and Y (ω) < x − q, then this implies that
X (ω) + Y (ω) < x. Hence, we get

{ω ∈ Ω : X (ω) + Y (ω) < x} =
⋃
q∈Q︸︷︷︸

“there exists”

{ω ∈ Ω : X (ω) < q} ∩ {ω ∈ Ω : Y (ω) < x− q}

By the properties of the σ-algebra F , it is immediate that {ω ∈ Ω : X (ω) + Y (ω) < x} ∈ F .

Exercise 3.1. 1. Show that XY is also a RV w.r.t. F .
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2. Show that Z , min {X, 0} is a RV w.r.t F .
Hint: Write the event {ω : Z (ω) ≤ z} as the union of two events, one of which takes on only the values
φ and Ω.

Let us attempt to come up with a sufficient condition for a function, f : R → R of a random variable
X : Ω→ R to also be a RV.

Definition (Borel-measurable function). Let f : R → R be a real-valued function. Then, f is said to be
Borel measurable if

Af (B) , {x ∈ R : f (x) ∈ B} ∈ B (R) , for EVERY Borel set B ∈ B (R) .

To depict this pictorially

(R,B (R)) (R,B (R))

Af (B) B

f

Inverse Mapping, f−1

We had seen a similar picture earlier in the context of RVs. The definition of a Borel-measurable function
just replaces (Ω,F) in the earlier picture with (R,B (R)).

We come to the main result of this section:

Theorem (Functions of RVs). Let (Ω,F ,P) be a given probability space, and let X : Ω → R be an F-
measurable RV. Suppose that f : R → R is a Borel-measurable function, then f (X) : Ω → R is also an
F-measurable RV.

Proof. Let f (X) : Ω→ R be denoted by the function g : Ω→ R. We wish to show that for any B ∈ B (R),(
f−1 (X)

)−1
(B) ∈ F .

Now, for a fixed B ∈ B (R),

(f (X))
−1

(B) = X−1
(
f−1 (B)

)
= X−1 (Af (B)) ∈ F ,

since Af (B) ∈ B (R), and from the definition of a RV.

Remark. Define L′ to be the space of all real-valued RVs on (Ω,F ,P) which have finite expectation, i.e.,

L′ = {X : X is an F-measurable RV and E [X] <∞} .

Think about why it is true that L′ is a “vector space” over the reals.
Hint:This follows from the fact that for X,Y ∈ L′, αX + βY ∈ L′, for α, β ∈ R (use the linearity
of expectation).
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3.1 Joint CDFs

Much like we had put down necessary (and sufficient) conditions for a function to be a CDF of a random
variable last time, we shall now list down analogous necsssary (and sufficient) conditions for CDFs. We shall
restrict our attention to collections of two random variables X1, X2. Let us assume that the random vector
X = (X1, X2) is measurable w.r.t some given probability space (Ω,F ,P).
Let FX1,X2

' F : R2 → [0, 1] be the joint CDF of X. Then, F satisfies

1. lim
x2→∞

FX1,X2 (x1, x2) = FX1 (x1) and lim
x1→∞

FX1,X2 (x1, x2) = FX2 (x2)

Proof Sketch: Fix x1 ∈ R. Consider the events Bn (x1) = {ω ∈ Ω : X1 (ω) ≤ n} , n ∈ N. Then,
B1 (x1) ⊆ B2 (x2) ⊆ . . .. Hence,

lim
n→∞

P (Bn (x1)) = P
(

lim
n→∞

Bn (x1)
)

= P {ω ∈ Ω : X1 (ω) ≤ x1}
= FX1

(x1) .

The proof of the other equation is similar.

2. (Monotonicity) Let x1, x2, x
′
1, x
′
2 ∈ R, with x1 ≤ x′1, x2 ≤ x′2. Then FX1,X2 (x1, x2) ≤ FX1,X2 (x′1, x

′
2).

3. For any a, b, c, d ∈ R s.t. −∞ < a < b <∞, −∞ < c < d <∞, we have

P (a < X1 ≤ b, c < X2 ≤ d) = F (b, d)− F (a, d)− F (b, c) + F (a, c) .

Proof : Do it yourself! Draw a picture of the region of interest in R2, and avoid double counting.

4. F is continuous from above and from the right, i.e.,

lim
h→0+,k→0+

F (x1 + h, x2 + k) = F (x1, x2) , x1, x2 ∈ R.

Proof Sketch: Consider sets Amn (x1, x2) ,
{
ω ∈ Ω : X1 (ω) ≤ x1 + 1

m , X2 (ω) ≤ x2 + 1
n

}
. Split up

the limit lim
m→∞,n→∞

F
(
x1 + 1

m , x2 + 1
n

)
into iterated limits, and use the definition of Am,n (x1, x2).

Exercise 3.2. Show that F : R2 → [0, 1] defined by

F (x, y) =

{
0, x < 0,

(1− e−x)
(
1/2 + 1

π tan−1 y
)
, if x ≥ 0

is a valid joint CDF.

3.2 Transformation of Random Vectors

3.2.1 Simulating CDFs

In this section, we are interested in transforming the Unif([0, 1]) random variable into any other random
variable, whose CDF is known. This is of use in settings where we wish to sample from a new random
variable whose distribution is known.

In class, we have prooved the following lemma:
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Lemma 3.3. Let U ∼ Unif ([0, 1]). Let F : R → [0, 1] be the CDF of the random variable we wish to
simulate (or sample from). We will assume, initially, that F is continuous and strictly increasing. Consider
the RV X = F−1 (U). Then X has the distribution F .

It turns out that we can define F−1 : [0, 1]→ R for a general F (·) as

F−1 (x) = inf {u : F (u) ≥ x} , for x ∈ [0, 1] .

Exercise 3.4. Propose a transformation to transform the Unif([0, 1]) RV to the Ber(p) RV.

Corollary. Let X be a given RV with distribution F : R → [0, 1]. Consider the RV Y = F (X). Then Y
has the same distribution as the Unif([0, 1]) RV.

Proof. Reverse the proof of the previous lemma.

Exercise 3.5. Let U ∼ Unif ([0, 1]). Show that Y = − 1
λ lnU is exponentially distributed with parameter λ.

Compare Y with a Ỹ generated by the lemma above. What do you conclude?

3.2.2 Transformation of Random Vectors

Let us recall the theorem seen in class.

Theorem. Let X = (X1, X2, . . . , Xn) have joint density f . Let g : Rn → Rn be continuously differentiable
and injective. Then Y = g (X) has the density

fY (y) =

{
fX
(
g−1 (y)

) ∣∣det
(
Jg−1 (y)

)∣∣ , if y is in the range of g,

0, o.w.

Example. Let (X,Y ) have joint density f : R \ {0} × R \ {0} → [0,∞). Find the density of Z = XY .
Solution: Let g (x, y) = (xy, x) = (u, v). Now,

g−1 (u, v) =
(
v,
u

v

)
[Note that g−1 (·) exists],

Jg−1 (u, v) =

(
0 1
1
v − u

v2

)
, with det

(
Jg−1 (u, v)

)
= −1

v
.

Therefore, fU,V (u, v) = fX,Y
(
v, uv

)
· 1v for u, v ∈ R \ {0}.

3.3 Supplementary Exercises

Assume a probability space (Ω,F ,P).

Exercise 3.6. Suppose U, V are jointly uniformly distributed RVs over the square with corners (0, 1) , (1, 0) , (1, 1) ,
and (0, 1), i.e.,

fU,V (u, v) =

{
1, if 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

0, o.w.

1. Write down the marginals fU (u) and fV (v) for all u, v ∈ R. Are U, V independent?



Lecture 3: Random Variables, Random Vectors and Expectation 3-5

2. Define a new RV X = UV . Find the pdf of X.
Hint:Draw a picture of the region {UV ≤ x} for some x > 0. Can you compute the area of
this region (do not write down the integral blindly!)? Differentiate this are w.r.t. x to
get the pdf.

Exercise 3.7. Let X and Y have a joint pdf given by

f (x, y) = x+ y, 0 ≤ 1, 0 ≤ y ≤ 1.

Are X and Y independent?

Exercise 3.8. Let U ∼ Unif ([0, 1]). What is the pmf of bnUc+ 1, where n ∈ N?
Note: For an x ∈ R, bxc is the largest integer less than or equal to x.


