Tutorial 4: Expectations, Some Cool Examples, and Some Inequalities

Lecturer: Parimal Parag TA: Arvind Scribes: Krishna Chaythanya KV

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Great Expectations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space.

Recall that for an \mathcal{F}-measurable $\mathrm{RV} X$, its expectation is given by

$$
\mathbb{E}[X]=\int_{x \in \mathbb{R}} x d F_{X}(x)
$$

In particular, if X is a simple $R V$, that takes values in a finite set $\mathfrak{X} \subseteq \mathbb{R}$, its expectation is given by

$$
\mathbb{E}[X]=\sum_{x \in \mathfrak{X}} x \mathbb{P}_{X}(x)
$$

Remark. 1. If $X \sim \operatorname{Ber}(p), \mathbb{E}[X]=p=\mathbb{P}_{X}(1)$.
2. If $X \sim \operatorname{Bin}(n, p)$, then $X=\sum_{i=1}^{n} Y_{i}$, where $Y_{i} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$. Hence, using the linearity of expectations, $\mathbb{E}[X]=n \mathbb{E}[Y]=n p$.
Exercise 4.1. 1. Find the expectation of the $\operatorname{Exp}(\lambda)$ distribution, with $\lambda>0$.
2. Prove that for $X \sim \operatorname{Geo}(p)$, for $p \in(0,1), \mathbb{E}[X]=\frac{1}{p}$. Hence, find the quantity $H(X) \triangleq \mathbb{E}\left[-\log \mathbb{P}_{X}(x)\right]$, where $X \sim \operatorname{Geo}(p)$.
Remark: The quantity $H(X)$ is called the entropy of the RV X.
We shall now consider some corner cases where the expectation of a RV may be infinite or may not even exist.

Example. Recall that $\mathbb{E}[X]$ is undefined when $\mathbb{E}\left[X^{+}\right]=\mathbb{E}\left[X^{-}\right]=\infty$.
Consider the RV $X: \Omega \rightarrow \mathbb{Z} \backslash\{0\}$ with $\operatorname{pmf} P_{X}(\cdot)$ given by

$$
P_{X}(x)=\frac{3}{\pi^{2} x^{2}}, \text { if } x \in \mathbb{Z} \backslash\{0\}
$$

Note: The sequence $\left\{\frac{1}{n^{2}}\right\}_{n \geq 1}$ is summable, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. However the sequence $\left\{\frac{1}{n}\right\}_{n \geq 1}$ is not summable, i.e., $\sum_{n \geq 1} \frac{1}{n}=\infty$. Can you provide an argument to show that this sum is ∞ ? (Compare this sum with the integral $\int_{1}^{\infty} \frac{1}{x} d x$)

Now, $\mathbb{E}\left[X^{+}\right]=\sum_{x \geq 1} \frac{x \cdot 3 \cdot}{1 \cdot \pi^{2} \cdot x^{2}}=\frac{3}{\pi^{2}} \sum_{x \geq 1} \frac{1}{x}=\infty$, and $\mathbb{E}\left[X^{-}\right]=\infty$ similarly. Hence, $\mathbb{E}[X]$ does not exist!

Exercise 4.2. Modify the argument above to construct a RV X whose expectation exists, and besides, $\mathbb{E}[X]=\infty$.

We now look at some interesting problems inspired by classical questions in theoretical computer science.
Example (The secretary problem). Suppose an agency is looking to hire secretaries. Assume that $n>1$ candidates apply. There exists an absolute ordering on the candidates in terms of their skill levels, but the agency is oblivious to this absolute order.

The hiring proceeds as follows:

- The candidates arrive in a random order (all permutations of the n candidates are equally likely)
- At time $i \in \mathbb{N}$, the agency hires the best candidate among the i candidates it has seen up until then.

What is the expected number of candidates hired?

Solution: The trick in such questions is to use the linearity of expectations.
Let X_{i} be the indicator random variable that denotes whether the $i^{\text {th }}$ candidate is hired

$$
X_{i}= \begin{cases}1, & \text { if candidate } i \text { is hired } \\ 0, & \text { o.w. }\end{cases}
$$

Clearly, we are interested in $\mathbb{E}[X]$ where $X=\sum_{i=1}^{n} X_{i}$.

We first note that $\mathbb{P}\left(X_{1}=1\right)=\mathbb{E}\left[X_{i}\right]=1 / i, i \in \mathbb{N}$ (To check this, consider all the permutations of i objects that are distant $)$. Hence, $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{i} \approx \log n+\mathcal{O}(1)$.
Hence, on average, the agency hires $\log n$ candidates.
Example (Balls-in-Bins or the "Coupon Collector" problem). Consider an experiment where we randomly toss identical balls into b bins numbered $1,2, \ldots, b$. The tosses are independent, and on each toss, the ball is equally likely to fall in any bin. Hence the probability that a tossed ball lands in a given bin is $1 / b$.

1. How many balls on average must we toss until a given bin contains a ball? [Exercise]
2. How many balls must we toss until every bin contains at least one ball? [Solution below]

Solution: Let us split the tosses into stages: the $i^{\text {th }}$ stage consits of tosses after the $(i-1)^{\text {th }}$ "hit" until the $i^{\text {th }}$ "hit". Here, a "hit" is a toss in which the ball falls into an empty bin.

Let N_{i} be the RV corresponding to the number of tosses in the $i^{\text {th }}$ stage. Then,

$$
\mathbb{E}\left[N_{i}\right]=\frac{b}{b-i+1} \quad(\text { Why? Show this. })
$$

We wish to compute $\mathbb{E}[N]$, where $N \triangleq \sum_{i=1}^{b} N_{i}$. Can you use the linearity of expectation to do this?
Further, using the asymptotic result introduced in the previous problem, can you put down a similar asymptotic result in b ?

Exercise 4.3 (Simple Exercise). I have a packet that I wish to send to a receiver over a noisy medium that drops packets with probability $\epsilon \in(0,1)$. I try sending this packet at time instants $t=1,2, \ldots$, and after each attempt to send the packet, I receive instantaneous feedback from the receiver about whether it received the packet. If the packet has not been received at time t, I send the packet again at time $t+1$. What is the expected number of times I need to send a single packet for correct reception?

4.2 Some Inequalities

4.2.1 Markov Inequality

In class, we saw the Markov inequality, which states the following.
Theorem 4.4 (Markov Inequality). If $X: \Omega \rightarrow \mathbb{R}$ is an \mathcal{F}-measurable RV , then for any monotonically non-decreasing function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$,

$$
\mathbb{P}\{X \geq \epsilon\} \leq \frac{\mathbb{E}[f(X)]}{f(\epsilon)}, \text { for } \epsilon \in(0, \infty)
$$

Corollary 4.5. Iif X is a non-negative RV, then,

$$
\mathbb{P}\{X \geq x\} \leq \frac{\mathbb{E}[X]}{x} \forall x>0
$$

We shall now use this to show an important property of non-negative RVs.
Lemma. For $X \geq 0$, w.p. 1 , if $\mathbb{E}[X]=0$, then $X=0$ w.p. 1 .

Proof. We intend to show that $\mathbb{P}(\{\omega: X(\omega)=0\})=1$ or equivalently that $\mathbb{P}(\{\omega: X(\omega)>0\})=0$.
We know that for any $n \in \mathbb{N}$,

$$
\mathbb{P}\left(\left\{\omega: X(\omega) \geq \frac{1}{n}\right\}\right) \leq \frac{\mathbb{E}[X]}{1 / n}=0
$$

Now, using the continuity of probability, we get that

$$
\mathbb{P}(\{\omega: X(\omega)>0\})=\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{\omega: X(\omega) \geq \frac{1}{n}\right\}\right)=0
$$

Exercise 4.6. Let $h: \mathbb{R} \rightarrow[0, \alpha]$ be a non-negative bounded function. Show that for $0 \leq a<\alpha$,

$$
\mathbb{P}(h(X) \geq a) \geq \frac{\mathbb{E}[h(x)]-a}{\alpha-a}
$$

4.2.2 A Longer Look at the Chernoff Bound

In class, we saw how we can obtain the Chernoff bound as a special case of Markov's inequality. In particular, for any $t \in \mathbb{R}$ and $\lambda>0$,

$$
\begin{aligned}
\mathbb{P}(X \geq t) & =\mathbb{P}(\lambda X \geq \lambda t) \\
& =\mathbb{P}\left(e^{\lambda X} \geq e^{\lambda t}\right) \quad(\text { Why? }) \\
& \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda t}} \cdot \longrightarrow(*)
\end{aligned}
$$

Remark 1. The quantity $\mathbb{E}\left[e^{\lambda X}\right]$, as a function of λ for a RV X, is called the moment-generating function (MGF) of $X, M_{X}(\lambda)$.

Note that, in the inequality $(*)$, the RHS is a function of λ, but the LHS is independent of λ. That is, the inequality is valid for every $\lambda>0$. Thus to get the "tightest" bound, we can optimize over $\lambda(>0)$ to obtain

$$
\mathbb{P}(X \geq t) \leq \inf _{\lambda>0} e^{-\lambda t} M_{X}(\lambda) \cdot \longrightarrow(\#)
$$

Let us now compute the RHS for the case of a Bernoulli RV.
Example 4.7. Let $X \sim \operatorname{Ber}(p), p<1 / 2$. Further, for $\lambda>0$, we define

$$
\psi_{X}(\lambda) \triangleq \log \mathbb{E}\left[e^{\lambda X}\right]=\log M_{X}(\lambda)
$$

By a simple calculation, we see that $M_{X}(\lambda)=p e^{\lambda}+1-p$. Hence,

$$
\psi_{X}(\lambda)=\log \left(p e^{\lambda}+1-p\right)
$$

Our Chernoff bound then becomes

$$
\begin{aligned}
\mathbb{P}(X \geq t) & \leq \min _{\lambda>0} e^{\left(\psi_{X}(\lambda)-\lambda t\right)} \quad t \in(0,1) \\
& =e^{\min _{\lambda 0}\left(\psi_{X}(\lambda)-\lambda t\right)} \quad(\text { Why } ?) \\
& =e^{\min _{\lambda>0}\left(\log \left(p e^{\lambda}+1-p\right)-\lambda t\right)} \\
& =e^{-D(t| | p)},
\end{aligned}
$$

where,

$$
D(t \| p) \triangleq(1-p) \log \left(\frac{1-t}{1-p}\right)+t \log \frac{t}{p}
$$

is called the binary relative entropy or the binary Kullback-Leibler Divergence. Further, it is easy to see that

$$
\mathbb{P}(X \geq t)=\left\{\begin{array}{l}
0, \text { for } t>1 \\
1, \text { for } t<0
\end{array}\right.
$$

Exercise 4.8. Compute the RHS of (\#) for $X \sim \operatorname{Poi}(\lambda)$.

