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5.1 Jensen’s Inequality

Recall the definition of a convex function.

Definition (Convex Function). A real-valued function f : R→ R is convex if for all x, y ∈ R and θ ∈ [0, 1],

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) .
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Figure 5.1: Convex Function

A convex function, hence looks like a cup opened
upwards.
Examples: f (x) = x2, ex, − log x, and so on.

A function f : R→ R is concave if (−f) is convex.

Remark. f (x) = ax+ b, for a, b ∈ R is both concave and convex.

We now state the Jensen’s inequality.

Theorem (Jensen’s Inequality). Let (Ω,F ,P) be a given probability space. Further, let f : R → R be a
convex function, and let X and f (·) be such that E [X] <∞ and E [f (X)] <∞. Then

E [f (X)] ≥ f (E [X]) .
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We will now look at a straightforward proof of Jensen’s inequality which relies on the following equivalent
definition of convex functions.

Definition (Convex Function). Let f : R → R be differentiable at all x ∈ R. Then f is convex iff for all
x, y ∈ R,

f (y) ≥ f (x) + f ′ (x) (y − x) .

Remark. Equivalently, if f is twice differentiable, its second derivative is non-negative for all x ∈ R iff f is
convex. The statement in the definition above then follows from an application of Taylor’s theorem.

We now prove Jensen’s inequality.

Proof. Since we are given that f is convex (and assuming that f is differentiable), for all ω ∈ Ω and for all
x ∈ R:

f (X (ω)) ≥ f (x) + f ′ (x) (X (ω)− x) ,

⇒ E [f (X)] ≥ f (x) + f ′ (x)E [X − x] .

Now, by choosing x = E [X],

E [f (X)] ≥ f (E [X]) .

Exercise 5.1. 1. Let P and Q be two probability distributions over a finite sample space Ω. Then, for
a convex function f , such that f (1) = 0, the f -divergence of P from Q is defined as

Df (P ||Q) , EQ
[
f

(
P (X)

Q (X)

)]
,

where X : Ω→ X(finite). Assume P (x) , Q (x) > 0, ∀x ∈ X. Show that

Df (P ||Q) ≥ 0.

2. We have earlier seen the definition of the MGF of a RV, X

MX (λ) , E
[
eλX

]
, for λ ∈ R.

Show that MX (λ) ≥ λE [X] , for λ ∈ R.

5.2 Problems on Condition Distributions and Expectations

We will now look at a few problems on conditional distributions of discrete and continuous RVs.

Example 5.2. 1. Let Y be a Poisson RV with mean µ > 0, and let Z be a geometrically distributed RV
with parameter p such that 0 < p < 1. Assume that Y and Z are independent.

(a) Find P (Y < Z)
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Solution. We will make use of the fact that Y ⊥ Z.

P (Y < Z) =

∞∑
y=0

P (Z < y)P (Y = y) [Law of total probability and Y ⊥ Z]

=

∞∑
y=0

(1− p)y e
−µµy

y!
[Show that P (Z > y) = (1− p)y ∀y ≥ 0.]

= e−µ
∞∑
y=0

(µ (1− p))y

y!
,

= e−µeµ(1−p) = e−µp. [Using Taylor’s theorem.]

(b) Find P (Y = i | Y < Z) , for i ≥ 0.

Solution. Fix i ≥ 0. Then

P (Y = i | Y < Z) =
P (Y = i, Y < Z)

P (Y < Z)

=
P (Y = i, Z > i)

P (Y < Z)

=

(
e−µµi

i!

)
(1− p)i

e−µp

=
e−µ(1−p)(µ (1− p))i

i!
.

Thus, conditioned on {Y < Z}, Y is Poisson distributed with parameter µ (1− p).

(c) Calculate E [Y | Y < Z]

Solution. In the previous part, we showed that the conditional distribution of Y , given that
{Y < Z} is Poisson. Hence,

E [Y | Y < Z] = µ (1− p) .

2. Suppose that RVs X and Y have the joint pdf

fX,Y (x, y) =

{
4x2, 0 < y < x < 1,

0, o.w.

(a) Find E [XY ].

Solution. The region in R2 where the joint density is non-zero is depicted in the figure below.
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From the density given, we get that

E [XY ] =

1∫
0

x∫
0

(xy)
(
4x2
)
dydx

=

1∫
0

4x2

 x∫
0

ydy

 dx

=

1∫
0

4x2 · x
2

2
= 2/5.

(b) Compute fY (y).

Solution. From the structure of the density function, we observe that fY (y) > 0 for 0 < y < 1.
Fix y s.t. 0 < y < 1. Then, x ∈ [y, 1], such that fX,Y (x, y) > 0. Hence,

fY (y) =

1∫
x=y

fX,Y (x, y) dx

=

1∫
x=y

4x2 =
4

3

(
1− y3

)
, for y ∈ (0, 1) .

Besides, fY (y) = 0, for y /∈ (0, 1).

(c) Compute fX|Y (x | y).

Solution. Note that fX|Y (x | y) is defined only for 0 < y < 1. Further,

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

=

{
3x2

1−y3 , x ∈ [y, 1] ,

0, o.w.

(d) Compute E
[
X2 | Y = y

]
for 0 < y < 1 and thereby write down E

[
X2 | Y

]
.

(Left as an exercise)
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Exercise 5.3. Let (X,Y ) be uniformly distributed over the triangle with co-ordinates (0, 0) , (1, 0), and
(2, 1).

1. What is the value of the joint pdf inside the triangle?

2. Find the marginal density of X, fX (x) for all x ∈ R.

3. Find the conditional density function fY |X (y | x) for all feasible values of x and y.

4. Calculate the conditional expectation E [Y | X = x].

We now proceed to a computational problem based on the law of iterated expectations.

Example 5.4. Let (Ω,F ,P) be a probability space and let Y be a geometrically distributed RV with
parameter p ∈ (0, 1).

We note that P (Y < k) = (1− p)k, k ∈ {1, 2, 3, . . .} .

Let X = 1{A}, where A , {ω ∈ Ω : Y (ω) = 1}. Now,

E [Y ] = E [E [Y | X]]

=

1∑
x=0

E [Y | X = x]PX (x)

= (1− p)E [Y | X = 0] + pE [Y | X = 1] Why? (5.1)

Now, E [Y | X = 1] = E [Y | Y = 1] = 1.

Further, E [Y | X = 0] = E [Y | Y > 1]

= 1 + E [Y − 1 | Y < 1] .

Now, we claim that E [Y − 1 | Y > 1] = E [Y ]. This is because

P (Y − 1 > k|Y > 1) = (1− p)k. [Memoryless property]

Hence, substituting in Eq. (5.1), we get

E [Y ] = p+ (1− p) (1 + E [Y ])

⇒ E [Y ] =
1

p
.

Example 5.5. Suppose that X1, X2, . . . are i.i.d. RVs with E [X1] < ∞. Suppose that N is another RV
independent of Xn for all n ∈ N such that N ∈ {1, 2, . . .} and E [N ] <∞. Then show that

E

[
N∑
n=1

Xn

]
= E [N ]E [X1] .

(This is an important example, a modified version of which you will encounter again, when you study pro-
cesses.)

Solution. Let SN ,
N∑
n=1

Xn. Note that the number of terms in the sum is a RV! We know that

E [SN ] = E [E [SN |N ]] . (5.2)
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Further,

E [SN |N = n] = E

[
N∑
i=1

|N = n

]
,

= E

[
n∑
i=1

xi

]
,

where the last inequality is valid because N ⊥ (Xi)i∈N and using the fact that (Xi)i∈N are i.i.d., we have
E [SN |N = n] = nE [X1]. Hence,

E [SN |N ] = NE [X1] .

Now, from Eq. (5.2), we have E [SN ] = E [NE [X1]] and hence,

E [SN ] = E [N ]E [X1]


