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5.1 Jensen’s Inequality

Recall the definition of a convex function.

Definition (Convex Function). A real-valued function f : R — R is convex if for all z,y € R and 6 € [0, 1],

fz+(1=0)y) <O0f(x)+(1—-0)f(y).

f ()

A convex function, hence looks like a cup opened
upwards.
Examples: f(r) = 2%, e*, —logx, and so on.

Figure 5.1: Convex Function

A function f: R — R is concave if (—f) is convex.

Remark. f(z) =ax 40, for a,b € R is both concave and convex.

We now state the Jensen’s inequality.

Theorem (Jensen’s Inequality). Let (2, F,P) be a given probability space. Further, let f : R — R be a
convex function, and let X and f (-) be such that E[X] < co and E [f (X)] < co. Then

Elf(X)] = f(E[X]).

5-1



5-2 Lecture 5: Jensen’s Inequality, Conditional Distributions and Expectation

We will now look at a straightforward proof of Jensen’s inequality which relies on the following equivalent
definition of convex functions.

Definition (Convex Function). Let f : R — R be differentiable at all z € R. Then f is convex iff for all
z,y €R,

F) =z f@)+f (@) @y-2).

Remark. Equivalently, if f is twice differentiable, its second derivative is non-negative for all x € R iff f is
convex. The statement in the definition above then follows from an application of Taylor’s theorem.

We now prove Jensen’s inequality.

Proof. Since we are given that f is convex (and assuming that f is differentiable), for all w €  and for all
zeR:

Now, by choosing = = E [X],

O

Exercise 5.1. 1. Let P and @ be two probability distributions over a finite sample space 2. Then, for
a convex function f, such that f (1) =0, the f-divergence of P from @ is defined as

D; (P10 20 £ (55|

where X : Q — X(finite). Assume P (z),Q (z) > 0, Vo € X. Show that

Dy (P|l@) = 0.

2. We have earlier seen the definition of the MGF of a RV, X
Mx (A\) 2E [e*], for A € R.

Show that Mx (\) > AE[X], for A € R.

5.2 Problems on Condition Distributions and Expectations

We will now look at a few problems on conditional distributions of discrete and continuous RVs.

Example 5.2. 1. Let Y be a Poisson RV with mean p > 0, and let Z be a geometrically distributed RV
with parameter p such that 0 < p < 1. Assume that Y and Z are independent.

(a) Find P(Y < 2)
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Solution. We will make use of the fact that Y L Z.

PY<Z)= ZIP’ (Z<y)P(Y =y) [Law of total probability and Y L Z]
y=0

_ - owe (1Y
= Z (I1-p) m [Show that P(Z > y) = (1 —p)’Vy > 0]
y=0 '
i (w1 =p)”
= e © —_—,

= e HetlmP) — gmhP, [Using Taylor’s theorem.|

(b) Find P(Y =¢|Y < Z), for i > 0.

Solution. Fix ¢ > 0. Then

P(Y=iY < 2)
P(Y < 2)
P(Y =i,7Z > i)
P(Y < 2)
(=) a-py
_ P —p)
i '

P(Y=i|Y<2Z)=

Thus, conditioned on {Y < Z}, Y is Poisson distributed with parameter p (1 — p). O
(c) Calculate E[Y | Y < Z]

Solution. In the previous part, we showed that the conditional distribution of Y, given that
{Y < Z} is Poisson. Hence,

EY|Y <Z]=p(-p).

2. Suppose that RVs X and Y have the joint pdf

42, 0<y<wz<l,

0, o.w.

fX,Y (x,y) = {

(a) Find E[XY].

Solution. The region in R? where the joint density is non-zero is depicted in the figure below.
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(1)
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From the density given, we get that

/ xy) 433 )dydx
0

xT

4a2 /ydy dz
0

E[XY]

2

422 .
2
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= 2/5.

(b) Compute fy (y).

Solution. From the structure of the density function, we observe that fy (y) > 0 for 0 < y < 1.
Fix y s.t. 0 <y < 1. Then, = € [y, 1], such that fxy (z,y) > 0. Hence,

fxy (z

4
42% = =
=5

y), fory € (0,1).

1
o)
-/
Besides, fy (y) =0, for y ¢ (0,1). O

(c) Compute fx|y (z | y).

Solution. Note that fx|y (x| y) is defined only for 0 < y < 1. Further,

Ixy (z,y)
fX|Y (x]y) = T(y)
3

2
:{lgs,xe[y,l],

0, o.w.

(d) Compute E[X?|Y =y] for 0 <y < 1 and thereby write down E [X? | Y].
(Left as an exercise)
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Exercise 5.3. Let (X,Y) be uniformly distributed over the triangle with co-ordinates (0,0),(1,0), and
(2,1).

1. What is the value of the joint pdf inside the triangle?
2. Find the marginal density of X, fx (z) for all z € R.
3. Find the conditional density function fy|x (y | z) for all feasible values of = and y.

4. Calculate the conditional expectation E[Y | X = z].

We now proceed to a computational problem based on the law of iterated expectations.

Example 5.4. Let (2, F,P) be a probability space and let Y be a geometrically distributed RV with
parameter p € (0, 1).
We note that P(Y < k) = (1 —p)k7 ke{l,2,3,...}.

Let X = 1(4y, where A2 {w € Q:Y (w) =1}. Now,
E[Y] =E[E[Y | X]]

Z Y| X =2|Px (z)

T=

=(1-pE[Y|X=0+pE]Y|X =1 Why? (5.1)
Now,E[Y | X =1]=E[Y |Y =1] =1
Further, E[Y | X =0 =E[Y | Y > 1]
—1+E[Y -1]Y <1].
Now, we claim that E[Y —1|Y > 1] = E[Y]. This is because
P(Y —1>k|lY >1)=(1-p)". [Memoryless property]
Hence, substituting in Eq. (5.1), we get
EY]=p+(1-p)(1+E[Y])
1

:»E[Y}:Z—Q.

Example 5.5. Suppose that X7, Xs,... are i.i.d. RVs with E[X;] < co. Suppose that N is another RV
independent of X, for all n € N such that N € {1,2,...} and E[N] < co. Then show that

N
E an] =E[N]E[X,].
n=1

This is an important example, a modified version of which you will encounter a, ain, when you study pro-
g
CGSSGS.)

N
Solution. Let Sy £ > X,. Note that the number of terms in the sum is a RV! We know that

n=1

E[Sn] =E[E[Sn[N]]. (5.2)
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Further,

E[Sy|N =n] =E

N

> =),
=1

ixz] )

=1

where the last inequality is valid because N L (X;),.y and using the fact that (X;), y are i.i.d., we have
E [Sy|N = n] = nE [X;]. Hence,

=E

E[Sy|N] = NE[X1].
Now, from Eq. (5.2), we have E [Sy| = E [NE [X;]] and hence,

E[Sn] = E[N]E[X)]



