Tutorial 5: Jensen's Inequality, Conditional Distributions and Expectation
 Lecturer: Parimal Parag
 TA: Arvind
 Scribes: Krishna Chaythanya KV

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Jensen's Inequality

Recall the definition of a convex function.
Definition (Convex Function). A real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}$ and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Figure 5.1: Convex Function

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is concave if $(-f)$ is convex.
Remark. $f(x)=a x+b$, for $a, b \in \mathbb{R}$ is both concave and convex.

We now state the Jensen's inequality.
Theorem (Jensen's Inequality). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given probability space. Further, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, and let X and $f(\cdot)$ be such that $\mathbb{E}[X]<\infty$ and $\mathbb{E}[f(X)]<\infty$. Then

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

We will now look at a straightforward proof of Jensen's inequality which relies on the following equivalent definition of convex functions.

Definition (Convex Function). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at all $x \in \mathbb{R}$. Then f is convex iff for all $x, y \in \mathbb{R}$,

$$
f(y) \geq f(x)+f^{\prime}(x)(y-x)
$$

Remark. Equivalently, if f is twice differentiable, its second derivative is non-negative for all $x \in \mathbb{R}$ iff f is convex. The statement in the definition above then follows from an application of Taylor's theorem.

We now prove Jensen's inequality.

Proof. Since we are given that f is convex (and assuming that f is differentiable), for all $\omega \in \Omega$ and for all $x \in \mathbb{R}$:

$$
\begin{aligned}
f(X(\omega)) \geq f(x)+f^{\prime}(x)(X(\omega)-x) \\
\Rightarrow \mathbb{E}[f(X)] \geq f(x)+f^{\prime}(x) \mathbb{E}[X-x]
\end{aligned}
$$

Now, by choosing $x=\mathbb{E}[X]$,

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

Exercise 5.1. 1. Let P and Q be two probability distributions over a finite sample space Ω. Then, for a convex function f, such that $f(1)=0$, the f-divergence of P from Q is defined as

$$
D_{f}(P \| Q) \triangleq \mathbb{E}_{Q}\left[f\left(\frac{P(X)}{Q(X)}\right)\right]
$$

where $X: \Omega \rightarrow \mathfrak{X}$ (finite). Assume $P(x), Q(x)>0, \forall x \in \mathfrak{X}$. Show that

$$
D_{f}(P \| Q) \geq 0
$$

2. We have earlier seen the definition of the MGF of a RV, X

$$
M_{X}(\lambda) \triangleq \mathbb{E}\left[e^{\lambda X}\right], \text { for } \lambda \in \mathbb{R}
$$

Show that $M_{X}(\lambda) \geq \lambda \mathbb{E}[X]$, for $\lambda \in \mathbb{R}$.

5.2 Problems on Condition Distributions and Expectations

We will now look at a few problems on conditional distributions of discrete and continuous RVs.
Example 5.2. 1. Let Y be a Poisson RV with mean $\mu>0$, and let Z be a geometrically distributed RV with parameter p such that $0<p<1$. Assume that Y and Z are independent.
(a) Find $\mathbb{P}(Y<Z)$

Solution. We will make use of the fact that $Y \perp Z$.

$$
\begin{array}{rlrl}
\mathbb{P}(Y<Z) & =\sum_{y=0}^{\infty} \mathbb{P}(Z<y) \mathbb{P}(Y=y) & & \text { [Law of total probability and } Y \perp Z] \\
& =\sum_{y=0}^{\infty}(1-p)^{y} \frac{e^{-\mu} \mu^{y}}{y!} & \text { [Show that } \left.\mathbb{P}(Z>y)=(1-p)^{y} \forall y \geq 0 .\right] \\
& =e^{-\mu} \sum_{y=0}^{\infty} \frac{(\mu(1-p))^{y}}{y!} & \\
& =e^{-\mu} e^{\mu(1-p)}=e^{-\mu p} . & \quad[\text { Using Taylor's theorem.] }
\end{array}
$$

(b) Find $\mathbb{P}(Y=i \mid Y<Z)$, for $i \geq 0$.

Solution. Fix $i \geq 0$. Then

$$
\begin{aligned}
\mathbb{P}(Y=i \mid Y<Z) & =\frac{\mathbb{P}(Y=i, Y<Z)}{\mathbb{P}(Y<Z)} \\
& =\frac{\mathbb{P}(Y=i, Z>i)}{\mathbb{P}(Y<Z)} \\
& =\frac{\left(\frac{e^{-\mu} \mu^{i}}{i!}\right)(1-p)^{i}}{e^{-\mu p}} \\
& =\frac{e^{-\mu(1-p)}(\mu(1-p))^{i}}{i!}
\end{aligned}
$$

Thus, conditioned on $\{Y<Z\}, Y$ is Poisson distributed with parameter $\mu(1-p)$.
(c) Calculate $\mathbb{E}[Y \mid Y<Z]$

Solution. In the previous part, we showed that the conditional distribution of Y, given that $\{Y<Z\}$ is Poisson. Hence,

$$
\mathbb{E}[Y \mid Y<Z]=\mu(1-p)
$$

2. Suppose that RVs X and Y have the joint pdf

$$
f_{X, Y}(x, y)=\left\{\begin{array}{l}
4 x^{2}, 0<y<x<1 \\
0, \text { o.w. }
\end{array}\right.
$$

(a) Find $\mathbb{E}[X Y]$.

Solution. The region in \mathbb{R}^{2} where the joint density is non-zero is depicted in the figure below.

From the density given, we get that

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int_{0}^{1} \int_{0}^{x}(x y)\left(4 x^{2}\right) d y d x \\
& =\int_{0}^{1} 4 x^{2}\left(\int_{0}^{x} y d y\right) d x \\
& =\int_{0}^{1} 4 x^{2} \cdot \frac{x^{2}}{2}=2 / 5 .
\end{aligned}
$$

(b) Compute $f_{Y}(y)$.

Solution. From the structure of the density function, we observe that $f_{Y}(y)>0$ for $0<y<1$.
Fix y s.t. $0<y<1$. Then, $x \in[y, 1]$, such that $f_{X, Y}(x, y)>0$. Hence,

$$
\begin{aligned}
f_{Y}(y) & =\int_{x=y}^{1} f_{X, Y}(x, y) d x \\
& =\int_{x=y}^{1} 4 x^{2}=\frac{4}{3}\left(1-y^{3}\right), \text { for } y \in(0,1)
\end{aligned}
$$

Besides, $f_{Y}(y)=0$, for $y \notin(0,1)$.
(c) Compute $f_{X \mid Y}(x \mid y)$.

Solution. Note that $f_{X \mid Y}(x \mid y)$ is defined only for $0<y<1$. Further,

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
& =\left\{\begin{array}{l}
\frac{3 x^{2}}{1-y^{3}}, x \in[y, 1] \\
0, \text { o.w. }
\end{array}\right.
\end{aligned}
$$

(d) Compute $\mathbb{E}\left[X^{2} \mid Y=y\right]$ for $0<y<1$ and thereby write down $\mathbb{E}\left[X^{2} \mid Y\right]$.
(Left as an exercise)

Exercise 5.3. Let (X, Y) be uniformly distributed over the triangle with co-ordinates $(0,0),(1,0)$, and $(2,1)$.

1. What is the value of the joint pdf inside the triangle?
2. Find the marginal density of $X, f_{X}(x)$ for all $x \in \mathbb{R}$.
3. Find the conditional density function $f_{Y \mid X}(y \mid x)$ for all feasible values of x and y.
4. Calculate the conditional expectation $\mathbb{E}[Y \mid X=x]$.

We now proceed to a computational problem based on the law of iterated expectations.
Example 5.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let Y be a geometrically distributed RV with parameter $p \in(0,1)$.

$$
\text { We note that } \mathbb{P}(Y<k)=(1-p)^{k}, k \in\{1,2,3, \ldots\} \text {. }
$$

Let $X=1_{\{A\}}$, where $A \triangleq\{\omega \in \Omega: Y(\omega)=1\}$. Now,

$$
\begin{align*}
& \mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]] \\
& \quad=\sum_{x=0}^{1} \mathbb{E}[Y \mid X=x] \mathbb{P}_{X}(x) \\
& \quad=(1-p) \mathbb{E}[Y \mid X=0]+p \mathbb{E}[Y \mid X=1] \quad \text { Why? } \tag{5.1}\\
& \quad \text { Now, } \mathbb{E}[Y \mid X=1]=\mathbb{E}[Y \mid Y=1]=1 . \\
& \text { Further, } \begin{aligned}
\mathbb{E}[Y \mid X=0] & =\mathbb{E}[Y \mid Y>1] \\
& =1+\mathbb{E}[Y-1 \mid Y<1] .
\end{aligned}
\end{align*}
$$

Now, we claim that $\mathbb{E}[Y-1 \mid Y>1]=\mathbb{E}[Y]$. This is because

$$
\mathbb{P}(Y-1>k \mid Y>1)=(1-p)^{k} . \quad[\text { Memoryless property }]
$$

Hence, substituting in Eq. (5.1), we get

$$
\begin{aligned}
\mathbb{E}[Y] & =p+(1-p)(1+\mathbb{E}[Y]) \\
\Rightarrow \mathbb{E}[Y] & =\frac{1}{p}
\end{aligned}
$$

Example 5.5. Suppose that X_{1}, X_{2}, \ldots are i.i.d. RVs with $\mathbb{E}\left[X_{1}\right]<\infty$. Suppose that N is another RV independent of X_{n} for all $n \in \mathbb{N}$ such that $N \in\{1,2, \ldots\}$ and $\mathbb{E}[N]<\infty$. Then show that

$$
\mathbb{E}\left[\sum_{n=1}^{N} X_{n}\right]=\mathbb{E}[N] \mathbb{E}\left[X_{1}\right] .
$$

(This is an important example, a modified version of which you will encounter again, when you study processes.)

Solution. Let $S_{N} \triangleq \sum_{n=1}^{N} X_{n}$. Note that the number of terms in the sum is a RV! We know that

$$
\begin{equation*}
\mathbb{E}\left[S_{N}\right]=\mathbb{E}\left[\mathbb{E}\left[S_{N} \mid N\right]\right] . \tag{5.2}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\mathbb{E}\left[S_{N} \mid N=n\right] & =\mathbb{E}\left[\sum_{i=1}^{N} \mid N=n\right], \\
& =\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right],
\end{aligned}
$$

where the last inequality is valid because $N \perp\left(X_{i}\right)_{i \in \mathbb{N}}$ and using the fact that $\left(X_{i}\right)_{i \in \mathbb{N}}$ are i.i.d., we have $\mathbb{E}\left[S_{N} \mid N=n\right]=n \mathbb{E}\left[X_{1}\right]$. Hence,

$$
\mathbb{E}\left[S_{N} \mid N\right]=N \mathbb{E}\left[X_{1}\right]
$$

Now, from Eq. (5.2), we have $\mathbb{E}\left[S_{N}\right]=\mathbb{E}\left[N \mathbb{E}\left[X_{1}\right]\right]$ and hence,

$$
\mathbb{E}\left[S_{N}\right]=\mathbb{E}[N] \mathbb{E}\left[X_{1}\right]
$$

