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6.1 Characteristic Functions

Definition (Characteristic Function). Let (Ω,F ,P) be a given probability space, and let X be an F-
measurable RV. Then, the characteristic function of X denoted as φX (ω), for ω ∈ R, is defined as

φX (ω) = E [exp (jωX)] , ω ∈ R,

where j =
√
−1.

Remark. |φX (ω)| ≤ 1,∀ω ∈ R. Hence, the characteristic function is bounded in magnitude.

We now compute the characteristic function of the standard normal RV.

Example (Characteristic function of the standard normal). Let X ∼ N (0, 1). For a fixed ω ∈ R,

φX (ω) = E [exp (jωX)]

= E [cos (ωX)]︸ ︷︷ ︸
L1(ω)

+j E [(sin (ωX))]︸ ︷︷ ︸
L2(ω)

.

Now, L2 (ω) =
1√
2π

∞∫
−∞

sin (ωx) e−
x2

2 dx = 0,

since sin (ωx) : R→ [−1, 1] is an odd function.

Further, L1 (ω) =
1√
2π

∞∫
−∞

cos (ωX) e−
x2

2 dx

=
2√
2π

∞∫
0

cos (ωX) e−
x2

2 dx.

The second equality is valid because cos (ωx) : R→ [−1, 1] is an even function. We now take the derivative
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of φX (ω) and use the bounded convergence theorem (because |cos (ωX)| ≤ 1) to get

dφX (ω)

dω
=
dL1 (ω)

dω

= 2

∞∫
0

−x sin (ωx)
1√
2π
e−

−x2

2 dx

=
2√
2π

∞∫
0

sin (ωx)
(
−xe− x2

2

)
dx

= −ω
∞∫
0

cos (ωx)
1√
2π
e−

x2

2 dx (integration by parts)

= −ωL1 (ω) = −ωφX (ω) .

The unique solution to the above ODE is

φX (ω) = e−
ω2

2 , ω ∈ R.

Exercise 6.1. Show that for a, b ∈ R

φaX+b (ω) = ejωbφaX (ω) = ejωbφX (aω) .

Use this to show that for Y ∼ N
(
µ, σ2

)
, for µ ∈ R, σ2 > 0,

φY (ω) = ejωµ−ω
2σ2/2

6.1.1 Joint Characteristic Functions

Definition (Joint Characteristic Function). Let (Ω,F ,P) be a probability space, and let X1, X2, . . . , Xn be
F-measurable RVs. Then, the joint characteristic function of X = (X1, X2, . . . , Xn) is denoted by φX (ω)
and is defined for all ω = (ω1, ω2, . . . , ωn) ∈ Rn as

φX (ω) = E
[
ejω

ᵀX
]

= E

[
exp

(
j

n∑
i=1

ωiXi

)]
, ωi ∈ R, ∀i ∈ [n].

Remark. Note that ω is an n-length vector of real numbers, which are not necessarily identical.

We now state two important results about characteristic functions.

Theorem (Joint Characteristic Functions and Independence). Let (Ω,F ,P) be a probability space and for
n ∈ N, let X1, X2, . . . , Xn be F-measurable RVs. Then X1, X2, . . . , Xn are mutually independent iff

φX (ω) =

n∏
i=1

φXi
(ωi) ∀ω = (ω1, ω2, . . . , ωn) ∈ Rn.

Remark. Note that the condition stated above must hold for all ω and for not just ω = (ω̂, ω̂, . . . , ω̂) ∈ R,
for independence to hold true.

Theorem (Characteristic Functions and Distributions). Let (Ω,F ,P) be a probability space, and let X and
Y be two F-measurable RVs such that

φX (ω) = φY (ω) , ∀ω ∈ R.

Then, FX (x) = FY (x) for all x ∈ R.
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Remark. Thus, in order to show that two RVs have the same distribution, it suffices to show that their
characteristic functions are identical.

6.2 Jointly Gaussian Random Variables

Before we proceed to study joint Gaussianity in general, here is a small exercise on independent Gaussian
RVs.

Exercise 6.2. Suppose that (Ω,F ,P) is a probability space, and X1, X2, . . . , Xn are independent F-
measurable RVs. Then, any linear combination Y = a1X1 + a2X2 + . . . + anXn, for ai ∈ R, i ∈ [n], is
a Gaussian RV.
Hint: We know the form of the characteristic function of a RV Z = N

(
µ, σ2

)
. Use the inde-

pendence property to compute φY (ω), for ω ∈ R, and use the theorem about characteristic
functions and distributions stated above.

Exercise 6.3 (Supplementary exercise on Normal RVs). Let X be a RV with the N (0, 1) distribution and
let a > 0. Show that the RV Y given by

Y =

{
X, if |X| < a,

−X, if |X| ≥ a,

has the N (0, 1) distribution.

Let us now define jointly Gaussian RVs.

Definition (Jointly Gaussian RV). A collection (Xi : i ∈ I), for some index set I ⊆ R, of RVs has a joint
Gaussian distribution if every finite linear combination of (Xi : i ∈ I) is a Gaussian RV.

Remark. A random vector X is called a Gaussian random vector if its co-ordinate random variables are
jointly Gaussian.

Let X1, X2, . . . , Xn be F-measurable jointly Gaussian RVs with finite means, and let X = (X1, X2, . . . , Xn).
Further let

µ , (E [X1] ,E [X2] , . . . ,E [Xn]) ,

and

K , E [(X − µ) (X − µ)
ᵀ
] .

Remark. K is called the covariance matrix of the random vector X. Note that K, by definition, is
positive semi-definite, i.e.,

xᵀKx ≥ 0, x ∈ Rn.

Then, the following lemma holds.

Lemma (Characteristic Function of Jointly Gaussian RVs). If X = (X1, X2, . . . , Xn) is a Gaussian random
vector, then its characteristic function is given by

φX (ω) = E
[
ejω

ᵀX
]

= exp

(
jωᵀµ− 1

2
ωᵀKω

)
, ∀ω ∈ Rn.
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Proof. Fix ω = (ω1, ω2, . . . , ωn) ∈ Rn. Then, the RV ωᵀX is Gaussian (why?)

with mean E [ωᵀX] = ωᵀµ,

and variance E [(ωᵀX − ωᵀµ)
ᵀ

(ωᵀX − ωᵀµ)] = ωᵀKω.

Since the characteristic function of a Gaussian RV Y with mean µ̃ ∈ R and variance θ2 > 0 is given by
φY (ω) = ejωµ̃−ω

2θ2/2, it follows that

φX (ω) = φωᵀX (1) = exp

(
jωᵀµ− 1

2
ωᵀKω

)
.

Remark. In fact, it can be show that a random vectorX with characteristic function φX (ω) = exp
(
jωᵀδ − 1

2ω
ᵀQω

)
for some δ ∈ Rn and a positive semi-definite real matrix Q ∈ Mn×n. The proof of this statement is left as
an exercise.
Hint: We need to show that any finite linear combination Y = a1X1+. . .+anXn for (a1, a2, . . . , an) ∈
Rb is Gaussian. To show this, it suffices to show that the characteristic function φY (ω) , ω ∈ R,
is in the form of the characteristic function of a Gaussian RV ∀(a1, a2, . . . , an) ∈ Rn.

From the above observation, it follows that the vector µ = (E [X1] ,E [X2] , . . . ,E [Xn]) , and the covariance
matrix K are sufficient to fully characterize a Gaussian random vector.

Exercise 6.4. Let X = (X1, X1, . . . , Xn) be a Gaussian random vector with mean µ and covariance matrix
K. Show that (Xi : i ∈ [n]) are independent iff K is diagonal.
Hint: Use the theorem on joint characteristic functions and independence.

Proposition. A Gaussian random vector X with mean µ and covariance matrix K, such that K is non-
singular, has a pdf given by

fX (x) =
1

(2π)
n
2 (det (K))

1
2

exp

(
− (x− µ)

ᵀ
K(x− µ)

2

)
.

Proof. Let X be a Gaussian random vector with mean µ and covariance matrix K. Read the following fact
about non-singular positive semi-definite (or positive definite) matrices.

Fact 6.5. Since K is positive semi-definite and non-singular, it can be written as K = UΛUᵀ, where U
is an orthonormal matrix, i.e., UUᵀ = UᵀU = I, and Λ is a diagonal matrix with positive eigenvalues
λ1, λ2, . . . , λn along the diagonal.

Let Y = Uᵀ (X − µ). Then Y is a Gaussian vector (why?) of mean 0 and covariance matrix

Q = E [Y Y ᵀ] = UᵀKU = Λ.

Since Λ is diagonal, Y is a vector of independent Gaussian RVs (follows from the exercise), and Yi ∼ N (0, λi).
Hence, Y has the joint pdf

fY (y) =

n∏
i=1

1√
2πλi

exp

(
− y2i

2λi

)

=
1

(2π)
n
2
√
λ1λ2 . . . λn

exp

(
−1

2

n∑
i=1

y2i
λi

)
.
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Note that det (K) =
∏n
i=1 λi and

∑n
i=1

y2i
λi

= yᵀΛ−1y since Λ−1 has terms (1/λi)i∈[n] along its diagonals
and zeros everywhere else. Thus,

fY (y) =
1

√
2π

n
2
√

det (K)
exp

(
−y

ᵀΛ−1y

2

)
.

Observe that X = UY + µ and hence, by the transformation of random vectors, since |det (U)| = 1 (and
the determinant of the Jacobian inverse is 1),

fX (x) = fY (Uᵀ (x− µ))

=
1

√
2π

n
2
√

det (K)
exp

(
−1

2
(x− µ)

ᵀ
UΛ−1Uᵀ (x− µ)

)
=

1
√

2π
n
2
√

det (K)
exp

(
−1

2
(x− µ)

ᵀ
K−1 (x− µ)

)
. (since K−1 = UΛ−1Uᵀ)

This simple exercise uses the Fact 6.5 presented in the proof above.

Exercise 6.6. Show that a positive semi-definite (symmetric) matrix V has a square root i.e., there exists
a symmetric matrix W such that W 2 = V .

We have seen in the proposition above that, if the covariance matrix K is non-singular, the pdf of a Gaussian
random vector is determined entirely by µ and K. But what if K is singular, i.e., det (K) = 0?

In such a situation, the random vector X does not have a pdf. We shall now analyze this situation.

Illustration. Let X be jointly Gaussian with covariance matrix K such that det (K) = 0. Hence, λi = 0
for some i ∈ [n], where the λis are obtained from the decomposition in Fact 6.5.

In other words, there is a vector α (which is an eigenvector of eigenvalue 0) such that αᵀKα = 0. However,

αᵀKα = Var (αᵀX) Show this!

= 0.

This implies, from the property of non-negative RVs with mean zero (we’ve seen this property in a previous
tutorial), that

αᵀ (X − µ) = 0 w.p. 1, or,

that if µ = 0, there exists some linear combination of X that equals 0, or that if µ = 0, the Xis are not
linearly independent.

Exercise 6.7. Let X and Y be RVs such that the vector Z = (X,Y ) is a Gaussian random vector with
zero mean and covariance matrix

K =

[
1 ρ
ρ 1

]
.

ρ is the correlation co-efficient between X and Y . Find the joint density of X + Y and X − Y .

Exercise 6.8. let X = (X1, X2, X3) be a zero mean Gaussian random vector with covariance matrix

K =

1 2 3
2 4 6
3 6 9

 .
1. Write down the marginal distributions of X1, X2, and X3.

2. Does a joint density exist for X?


