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We shall now see a few example problems on the almost sure, L2 and “in distribution” convergence of random
variables.

Example 8.1. Let U ∼ Unif ([0, 1]) and let Xn = (−1)nU
n for n ≥ 1. Let the probability space be the

standard unit-interval probability space

1. Show that (Xn : n ∈ N) converges almost surely.

Solution. Fix an ε > 0. Our claim is that Xn
a.s.−−−−→
n→∞

0.

We wish to show that the set

A0
ε ,

⋃
N(ε)≥1

⋂
n≥N(ε)

{ω : |Xn (ω)| ≤ ε}

is of probability 1. To see this, note that

A0
ε =

⋃
N(ε)≥1

⋂
n≥N(ε)

{ω : U (ω) ≤ ε}

=
⋃

N(ε)≥1

⋂
n≥N(ε)

[0,min {nε, 1}]

= [0, 1] (Fill in the details)

Hence, P
(
A0
ε

)
= 1, ∀ε > 0, showing that Xn

a.s.−−−−→
n→∞

0.

2. Show that the sequence converges in the mean squared sense.

Solution. Observe that

E
[
|X2

n − 0|2
]

= E
[
|Xn|2

]
=

1

n2
E
[
U2
]

=
1

3n2
, and hence,

lim
n→∞

E
[
|Xn − 0|2

]
= 0.

Thus Xn
m.s.−−−−→
n→∞

0.
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Recall that the definition of convergence in distribution, given (Ω,F ,P).

Definition. A sequence (Xn : n ∈ N) of F-measurable random variables is said to converge in distribution
to an F-measurable random variable X if

lim
n→∞

FXn
(x) = FX (x) ,

for every point of continuity, x ∈ R of FX (·).

With this definition in mind, can you show formally that in the example above, Xn
d.−−−−→

n→∞
0?

x

FXn
(x)

1
n

(n even)

1

0
x

FXn
(x)

1

1
n

(n odd)

0

One can see that

FXn (x)
0−−−−→

n→∞
, ∀x < 0, and

FXn
(x)

n→∞−−−−→ 1, ∀x ≥ 0.

Hence, Xn
d.−−−−→

n→∞
0 as 0 is the only point of discontinuity of FX (·), where X ≡ 0.

Example 8.2 (Courtesy Karthik P. N.). Let W1,W2, . . . be a sequence of i.i.d. N
(
0, σ2

)
random variables.

Let X0 and define

Xn+1 =
Xn +Wn+1

2
n ≥ 0

Which random variable does Xn converge in distribution to?

Solution. By iterating (or rolling-out) the equation for Xn+1, we obtain that

Xn =
W1

2n
+

W2

2n−1
+ . . .+

Wn

2
.

Since (Wi : i ∈ N) are i.i.d, Xn ∼ N
(

0, σ2

(
n∑
i=1

1
4i

))
. Therefore,

P (Xn ≤ x) = P

 Xn − 0√
σ2
∑n
i=1

1
4i

≤ x√
σ2
∑n
i=1

1
4i


= φ

 x√
σ2
∑n
i=1

1
4i

 ∀x ∈ R.
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Hence,

lim
n→∞

P (Xn ≤ x) = lim
n→∞

FXn
(x)

= φ

 lim
n→∞

x√
σ2
∑n
i=1

1
4i

 (since φ (·) is continuous)

= φ

(√
3x

σ

)
, ∀x ∈ R.

Hence, Xn
d.−−−−→

n→∞
N
(
0, σ2/3

)
.

So far, in the context of almost sure convergence, we have seen examples where the probability space was
explicitly defined. This allowed us to use the “first-principles” definition of almost sure convergence to solve
the problems.

Our goal now is to demonstrate how convergence in probability can be used to prove almost sure convergence
in select case, by using the powerful Borel-Cantelli lemmas.

Lemma (Borel-Cantelli). Let (Ω,F ,P) be a given probability space.

1. For a sequence of events, (An : n ∈ N), if
∑
n∈N

P (An) <∞, then

P (An i.o.) = 0.

2. For a sequence of mutually independent events, (An : n ∈ N), if
∑
n∈N

P (An) =∞, then

P (An i.o.) = 1.

Proof. 1. We know that

P (An i.o.) = P

 ∞⋂
N=1

⋃
n≥N

An


= lim
N→∞

P

 ⋃
n≥N

An

 (Why?)

≤ lim
N→∞

∞∑
n=N

P (An) (Union bound)

= 0,

where the last equality is true since we are given that
∑
n∈N P (An) < ∞ and hence the tail sums go

to zero.
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2. We want to show that P (An i.o.) = 1. Equivalently, we show that P
(
{An i.o.}{

)
= 0.

P
(
{An i.o.}{

)
= P

 ∞⋃
N=1

⋂
n≥N

A{
n


= lim
N→∞

P

 ⋂
n≥N

A{
n

 (Why?)

= lim
N→∞

∞∏
n=N

(1− P (An)) (Ans are independent)

≤ lim
N→∞

∞∏
n=N

e−P(An) since 1− x ≤ e−x ∀x ∈ R

= e
− lim

N→∞

∑∞
n=N P(An)

= 0

since
∑
n∈N P (An) =∞ by the hypothesis. Hence,

P (An i.o.) = 1.

Exercise 8.3. Suppose that ((X1, Y1) , (X2, Y2) , . . .) is a sequence of random vectors such that P ({Xk ≥ Yk}) =
αk for some 0 < α < 1. Show that P ({Xk ≥ Yk} i.o.) = 0.

How do we use the Borel-Cantelli lemmas to prove almost sure convergence from the knowledge of convergence
in probability? The recipe is as follows.

1. For every fixed ε > 0, obtain an expression for, or an upper bound on, the probability P (|Xn −X| ≥ ε),
where X is the (guessed) limit random variable.

2. If
∞∑
n=1

P (|Xn −X| ≥ ε) <∞, then by the Borel-Cantelli Lemma (1), we can say that P ({|Xn −X| ≥ ε} i.o.) =

0.
If this holds for every ε > 0, then this immediately implies that Xn

a.s.−−−−→
n→∞

X.

Use the first principles method of proving almost sure convergence to ascertain that the last statement holds.

If on the other hand, the Xns are independent, and we are able to show that
∑∞
n=1 P (|Xn −X| ≥ ε) =∞,

then
P ({|Xn −X| ≥ ε} i.o.) = 1

for some ε > 0. It then follows that Xn 6a.s.−−−−→
n→∞

X.

Let us now look at an example to see this procedure in action.

Example 8.4. (Xn : n ∈ N) is a sequence of independent random variables with marginal pmfs given by

P
(
Xn =

1

2

(
1− 1

n

))
= P

(
Xn =

1

2

(
1 +

1

n

))
=

1

2
.
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1. Show that the sequence converges almost surely.

Solution. First, we note that for a fixed ε > 0,

P
({

ω : |Xn (ω)− 1

2
| ≤ ε

})
= P

(
1

2
− ε ≤ Xn ≤

1

2
+ ε

)
=

{
0, if ε < 1

2n

(
or n < 1

2ε

)
1, o.w.

Hence, it is immediate that

lim
n→∞

P
({

ω : |Xn (ω)− 1

2
| > ε

})
= 0.

⇒Xn
p.−−−−→

n→∞

1

2
.

Now, observe that
∞∑
n=1

P
(
|Xn −

1

2
| > ε

)
=

1

2ε
<∞

Hence, Xn
a.s.−−−−→
n→∞

1
2 .

2. Check if (Xn : n ∈ N) converges in L2 (mean-squared convergence)

Solution. We have that

E

[(
Xn −

1

2

)2
]

=
1

2

1

4n2
+

1

2

1

4n2

=
1

4n2
0−−−−→

n→∞
.

Hence, Xn
m.s.−−−−→
n→∞

0.

Remark. In the example above, the almost sure convergence implies convergence in probability and con-
vergence in distribution. However, it does not imply (nor is implied by) convergence in L2. The second
property, hence, needs to be checked independently.


