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As a simple exercise in showing that convergence in probability does not necessarily imply convergence in
distribution, can you use the Borel-Cantelli lemmas to construct a random variable (and a probability as-
signment) which converges to X ≡ 0 in probability, but not almost surely?
Hint: Construct a sequence of Bernoulli random variables Xn such that lim

n→∞
P (Xn = 1) = 0, but∑

n∈N P (Xn = 1) =∞.

Now, let us revisit convergence in distribution, and show that convergence in probability implies convergence
in distribution.

Theorem. If Xn
p.−−−−→

n→∞
X, then Xn

d.−−−−→
n→∞

X.

Proof. We first put down an easily verifiable claim:

Claim. For two arbitrary random variables, X and Y , on the same probability space, and for a ∈ R and
ε > 0,

P (Y ≤ a) ≤ P (X ≤ a+ ε) + P (|Y −X| > ε) .

Proof of Claim. {Y ≤ a} ⊆ {X ≤ a+ ε}∪{|Y − x| > ε}. The result then follows from the union bound.

Now, we have that if a is a point of continuity of the limit random variable X for every ε > 0,

P (Xn ≤ a) ≤ P (X ≤ a+ ε) + P (|Xn −X| > ε) . (9.1)

Likewise,
P (X ≤ a− ε) ≤ P (Xn ≤ a) + P (|Xn −X| > ε) , (9.2)

where both eqn. (9.1) and eqn. (9.2) follow from the claim. Hence, it is true that

P (X < a+ ε)− P (|Xn −X| > ε) ≤ P (Xn ≤ a) ≤ P (X ≤ a+ ε) + P (|Xn −X| > ε) .

Taking the limit as n→∞, we obtain that

lim
n→∞

FXn (a) = F (a)

for every a that is a point of continuity.
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Now, the complete convergence picture looks like this.

a.s. convergence

Lp convergence

p. convergence d. convergence

Figure 9.1: Picture of relationship between convergences

To recap the all the lectures of the course briefly, we have learnt what probability spaces are, how random
variables are defined on probability spaces, how random variables interact with one another (correlation),
and how sequences of random variables behave in the limit.

As an important special case of the limiting behaviour of random variables, we consider the empirical average
of i.i.d. random variables, and examine how this new random variable behaves, in the “large-n-limit”.

Given i.i.d random variables X1, X2, . . . , Xn defined on a probability space (Ω,F ,P), our object(s) of interest
are

Sn ,

n∑
i=1

Xi

n
, and,

Zn ,

n∑
i=1

(Xi − E [X1])

√
n
√

var (X1)
.

For convenience, we denote E [X1] , µ and var (X1) , σ2.

Theorem (Weak Law of Large Numbers (WLLN)).

Sn
p.−−−−→

n→∞
µ.

Proof. By the Chebyshev inequality, for any ε > 0,

P
(∣∣∣∣∑n

i=1Xi

n
− µ

∣∣∣∣ ≥ ε) ≤ var (Sn)

ε2

=
σ2

nε2
0−−−−→

n→∞
.

Remark. By turning Chebyshev’s inequality on its head, we get that for any n ≥ 1 and for a fixed ε > 0,

Sn ∈
[
µ− σ√

nε
, µ+

σ√
nε

]
w.p. ε.

Hence, Sn is “concentrated about its mean”.



Lecture 9: Weak Convergence and Some Limit Theorems 9-3

The following theorem strengthens the previous theorem.

Theorem (Strong Law of Large Numbers (SLLN)). Given that E [|X1|] = B <∞ , it is true that

Sn
a.s.−−−−→
n→∞

µ.

We will prove a “weakened” form of this statement, with the additional condition that E
[
(Xn − µ)

4
]

= B <
∞.

Proof: Borel SLLN. For any ε > 0,

P (|Sn − µ| ≥ ε) = P

(∣∣∣∣∣
n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≥ nε
)

≤
E
[
(
∑n
i=1 (Xi − µ))

4
]

n4ε4
(Why?)

Now, E

( n∑
i=1

(Xi − µ)

)4
 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [(Xi − µ) (Xj − µ) (Xk − µ) (Xl − µ)] .

Further, since (Xi : i ∈ [n]) are i.i.d, only terms of the form E
[
(Xi − µ)

2
(Xj − µ)

2
]

for i 6= j and E
[
(Xi − µ)

4
]

are non-zero. Now,

E
[
(Xi − µ)

2
(Xj − µ)

2
]

= E
[
(Xi − µ)

2
]
E
[
(Xj − µ)

2
]

= σ4.

We also have E
[
(Xi − µ)

4
]

= B. Hence,

E

( n∑
i=1

(Xi − µ)

)4
 = 3n(n− 1)σ4 + nB.

Show the above result using a counting argument.
Therefore,

P (|Sn − µ| ≥ ε) ≤
3n (n− 1)σ4 + nB

n4σ4
,

which satisfies
∑
n∈N P (|Sn − µ| ≥ ε) ≤ ∞. By the Borel-Cantelli Lemma,

Sn
a.s.−−−−→
n→∞

µ.

As an application of the strong law of large numbers, we describe the principle of “Monte-Carlo Integration”.

Suppose that we wish to compute the value of a multi-dimensional definite integral

I ,
∫

Ω

f (x) dx,

where Ω ⊆ Rm has a volume

V ,
∫

Ω

dx.
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We now write

I = V

∫
Ω

1

V
f (x) dx,

≈ V 1

n

n∑
i=1

f (Xi)

for large n and for i.i.d samples X1, . . . , Xn.

Example (Computing the value of π). An interesting example is a method of approximately computing the
value of π. Consider

H (x, y) =

{
1, if x2 + y2 ≤ 1,

0, o.w.,

with Ω = [−1, 1]× [−1, 1]. Note that here V = 4. Now,

Iπ =

∫
Ω

H (x, y) dxdy = π,

which can be approximately computed as

Iπ ≈ 4
1

N

N∑
i=1

H (Xi, Yi)

for (Xi, Yi)
i.i.d∼ Unif (Ω).

We now turn our attention to yet another limit theorem which involves (Zn : n ∈ N). Recall that

Zn =

n∑
i=1

(Xi − E [X1])

√
n
√

var (X1)
.

For simplicity, we will assume that E [X1] = 0.

Theorem (Central Limit Theorem (CLT)). Zn
d.−−−−→

n→∞
N (0, 1).

Proof. To show convergence in distribution, recall that it suffices to show that φZn (ω)
d.−−−−→

n→∞
φN (0,1) (ω),

for all ω ∈ R. Note that

φZn (ω) = E
[
exp

(
jω

(∑n
i=1Xi√
nσ2

))]
= E

[
exp

(
j

ω√
nσ2

n∑
i=1

Xi

)]
=
(
E
[
e
j ω
σ
√
n
X1

])n
because (Xn : n ∈ N) are i.i.d.

Let ψ (ω) , E
[
e
j ω
σ
√
n
X1

]
. By Taylor’s theorem,

ψ (ω) = ψ (0) + ψ′ (0)ω + ψ′′ (0)
ω2

2
+R (ω) ,
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where R(ω)
ω2 −−−→

ω→0
0. Now observe that

ψ (0) = 1,

ψ′ (0) = 0, Since E [X1] = 0

ψ′′ (0) = −σ
2

n
. Calculate this explicitly.

Hence, we get that

φZn (ω) =

(
1− 1

n

(
ω2σ2

2
+ ηn

))n
,

where lim
n→∞

ηn = 0. Fill in the details as an exercise.

Using the result that if (an)n∈N is any sequence of real numbers such that lim
n→∞

an = a, then

lim
n→∞

(
1 +

an
n

)n
= ea,

we get that

lim
n→∞

φZn (ω) = e−
ω2σ2

2 , for any ω ∈ R.

Thus Zn
d.−−−−→

n→∞
N (0, 1).

Remark. The key take-away from the CLT is that it provides an asymptotic concentration result. That is,
it shows that for “large-enough n” (and for zero mean i.i.d RVs)

|P (Zn ≤ x)− Φ (x)| ≤ ε (Φ (·) is the CDF of N (0, 1))

⇒ |P (Zn > x)−Q (x)| ≤ ε (Q (·) is the CCDF of N (0, 1))

⇒ Q (x)− ε ≤ P

(
n∑
i=1

Xi >
√
nσx

)
≤ Q (x) + ε.

Put x as Q−1 (δ), for some “small δ”. Hence,

P

(
n∑
i=1

Xi >
√
nσQ−1 (δ)

)
≈ δ + ε.

Or in other words, for “large-enough” n,

n∑
i=1

Xi ∈
[
−
√
nσQ−1 (δ) ,

√
nσQ−1 (δ)

]
w.p. 1− δ.

This is a “tighter” concentration bound than that provided by Chebyshev’s inequality, but the drawback is
that it is asymptotic (i.e., n needs to be large).


