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In this tutorial, we shall discuss the definition of a random process and review some of the quantities (means,
correlation, etc.) associated with a random process. We will also briefly discuss random walks.

Definition. A random process X is an indexed collection X = (Xt : t ∈ T) of random variables, all on the
same probability space, (Ω,F , P ).

Remark. 1. If T = Z, then X is called a discrete-time random process.

2. If T = R, or if T is an interval of R, then X is called a continuous-time random process.

3. Often, it is useful to view a random process as X : Ω→ XT. For each ω ∈ Ω, Xt (ω) is a function of t,
called the sample path corresponding to ω.

Associated with a random process X are quantities µX (t), RX (s, t) and CX (s, t) for s, t ∈ T. Refer to the
lecture notes for the definitions of these quantities.

Example. Let U = (Uk : k ∈ Z) be a random process such that the Uks are independent and
P (Uk = 1) = P (Uk = −1) = 1

2 . Note that

RU (k, l) =

{
1, if k = 1,

0, o.w.
(for k, l ∈ Z)

RX (s, t) =

{
1, if bsc = btc
0, o.w.

(for s, t ∈ R).

Exercise 10.1. Let A,B be independent N (0, 1) random variables. Suppose that Xt = A+ t+ Bt2. Can
you write down the pdf of Xt for t ∈ R?

10.1 A brief look at random walks

A random walk is a discrete-time random process (or stochastic process) X = (Xn : n ∈ N ∪ {0}) with the
initial condition X0 = 0, and the update rule

Xn+1 = Xn + Un, n ∈ N ∪ {0} ,

where U = (Un : n ∈ N ∪ {0}) is some i.i.d. process.

Remark. Note that the evolution of the process is of the form

Xn+1 = f (Xn, Un) for (Un : n ∈ N)

being an i.i.d. process. We shall return to this observation, later, when we speak about Markov Chains.

10-1



10-2 Lecture 10: An introductory look at Random Processes

The random walk has the “independent increment property”. To see this, note that for s, t ∈ N ∪ {0},

Xt = Xt −X0

= (Xt −Xs) + (Xs −X0) .

Hence, Xt −Xs = (Xt −X0)− (Xs −X0)

=

t−1∑
r=s

Ur

which is a function of Us, . . . , Ut−1, while Xs−X0 is a function of U0, . . . , Us−1. Since U is an i.i.d. process,
the independent increment property holds.

Also, note that if E [[]U1] = µ and var (U1) = σ2,

µX (t) = E [Xt] = tµ

RX (t, t)var (Xt) = tσ2,

and RX (t, s) = E [Xt −Xs] (assume WLOG that t > s)

= E [(Xt −X0) (Xs −X0)]

= E [(Xs −X0) (Xt −Xs +Xs −X0)]

= E [(Xs −X0) (Xt −Xs)] + E
[
(Xs −X0)

2
]

= E [Xs −X0]E [Xt −Xs] + E
[
(Xs −X0)

2
]

(Why?)

= stµ2 + sσ2.

Remark. It is immediate that if µ 6= 0 or σ 6= 0, then the random walk above is not stationary.

Now, we will take a look at an interesting (and popular) problem in simple random walks on the integers.

Definition. A random walk is “simple” if P (Ui = 1) = p = 1− P (Ui = 0) ,∀i ∈ N ∪ {0}.

10.1.1 The Gambler’s Ruin Problem

Let us consider the evolution of a gambler’s wealth as a simple random walk on the integers.

Let Xn be the number of units of wealth a gambler has at time n and let X0 = k ≥ 0. The gambler wishes
to accumulate b units of wealth for b ≥ k, before it reaches a wealth of 0 units. Let us call this event a
“success”.
We wish to compute the probability P (success | X0 = k) , sk.

To this end, note that

sk = P (U1 = 1)P (success | U1 = 1, X0 = k) + P (U1 = −1)P (success | U1 = −1, X0 = k)

i.e., sk = p.sk+1 + (1− p) sk−1 with s1 = 1 and s0 = 0.

For p 6= 1/2, this recurrence relation can be explicitly solved to yield

sk =
1−

(
1−p
p

)k
1−

(
1−p
p

)b , 0 ≤ k ≤ b.



Lecture 10: An introductory look at Random Processes 10-3

Further, when p = 1/2, the solution to the recurrence relation is

sk =
k

b
, 0 ≤ k ≤ b.

Suppose that p > 1/2, note that

lim
b→∞

sk = 1−
(

1− p
p

)k

,

which decreases geometrically with the initial wealth k.


