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In all the tutorials that follow, we will primarily be concerned with DTMCs with finite and (sometimes)
countable state spaces.

Definition (DTMC). A discrete time random process X = (Xn : n ∈ N ∪ {0}) is called a DTMC if it holds
that for any n ≥ 1, and for all (x0, x1, . . . , xn) ∈ Rn+1,

P (Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn | Xn−1 = xn−1) .

Remark. 1. We denote the transition probability P (Xn = y | Xn−1 = x) as Pxy (n).

2. However, our interest will be in time-homogenous DTMCs for which Pxy (n) = Pxy,∀n ≥ 1.

Example 11.1. Herein, we show that if X : Ω → XN is a time-homogeneous DTMC, then the invariance
of the distribution of Xn with n is sufficient for X to be stationary.

Solution. We need to show that for any collection n1, n2, . . . , nN of indices,

P (Xn1
= i1, Xn2

= i2, . . . , XnN
= iN ) = P (Xn1+t = i1, Xn2+t = i2, . . . , XnN+t = iN ) ∀t ∈ N.

To see this, note that

P (Xn1 = i1, . . . , XnN
= iN ) = P (Xn1 = i1)P

(n2−n1)
i1i2

P
(n3−n2)
i2i3

· · ·P (nN−nN−1)
iN−1iN

[By time-homogeneity]

= P (Xn1+t = i1)P
(n2−n1)
i1i2

P
(n3−n2)
i2i3

· · ·P (nN−nN−1)
iN−1iN

[By assumption]

= P (Xn1+t = i1, Xn2+t = i2, . . . , XnN+t = iN ) [By time-homogeneity]

Remark. This implies that for a homogeneous DTMC, we only need to look at the time invariance of the
marginals to establish stationarity!

However, this is not true for a general random process. To see this, consider the process X such that
P (Xn = 1) = P (Xn = −1) = 1/2,∀n ≥ 0. However, we have that P (Xn = i,Xn+1 = j) , i, j ∈ {−1, 1} is
distributed according to the table below:

Xn+1 = −1 Xn+1 = 1
Xn = −1 0.3 0.2
Xn = 1 0.2 0.3

(n→ even)

Xn+1 = −1 Xn+1 = 1
Xn = −1 0.4 0.1
Xn = 1 0.1 0.4

(n→ odd)

It is easy to see that shifts of the time-step lead to a collapse of the time-invariance of the 2-element joint.
(Henceforth, DTMC ≡ time-homogenous DTMC).
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Exercise 11.2. 1. If X = (Xn : n ≥ 0) is a DTMC on a state space S, then prove that for n < n1 <
n2 < · · · < nm and i0, i1, . . . , in−1, i, j1, . . . , jm ∈ S ,

P (Xni
= jii, 1 ≤ i ≤ m | X0 = i0, X1 = i1, . . . , Xn = i) = P (Xni

= ji, 1 ≤ i ≤ m | Xn = i)

Hint: Condition and sum.

2. Show that for any A0,A1, . . . ,An−1 ⊆ S and i, j ∈ S

P (xn+1 = j | X0 ∈ A0, X1 ∈ A1, . . . , Xn−1 ∈ An−1, Xn = i) = P (Xn+1 = j | Xn = i) .

Exercise 11.3. If the random variables X,Y, Z (in that order) obey the Markov Property, i.e., X—Y —Z
is a DTMC, does Z, Y,X also have the Markov Property? That is, do we have that Z—Y —X?

11.1 An alternate view of DTMCs

We review the “Random Mapping Representation” theorem, discussed in the lectures, in this subsection.

Often, we will encounter descriptions of systems with state that obey update equations of the form

x (t + 1) = ft (x (t)) , t ∈ N ∪ {0} with x (0) = C, C ∈ R.

The above expression is a description of a special kind of causal dynamical system, where the causality here
referes to x (t) being dependent only on the history upto that point t, and not the future.

Simple examples of such systems include the system with the position of a particle as the state x (t) and an
update equation based on the velocity of the particle at time t − 1. (Try writing this down – the system

description is a discrete-time approximation of the o.d.e.: dx(t)
dt = v (t).)

Now, let us inject stochasticity into the system description – the state is now a random variable. In particular,
let U = (Un : n ∈ N ∪ {0}) be an i.i.d. sequence. Let the state update rule be written as

Xn+1 = f (Xn, Un) n ≥ 0, where f : X× U → X. (11.1)

Exercise 11.4. Suppose that Un, n ≥ 0 takes values in a finite set U . Can you show that X = (Xn : n ∈ N ∪ {0})
is a DTMC? Is it time-homogeneous?

If you’ve tried out the exercise above, you will realize that the answer to the last question is in the affirmative.
In fact, the Random Mapping Representation theorem establishes the converse: any homogeneous DTMC
can be represented by the update equation eq. (11.1), for a suitably defined defined f .

Exercise 11.5. Show that by the system form eqn. (11.1) of a DTMC

P (Xn+1 = j | Xn = i) = P (f (i, Un) = j)

= P (f (i, U0) = j) .

This is another way of verifying time-homogeneity.

We conclude this discussion with a simple example.

Example 11.6. There are N empty boxes and an infinite collection of balls. At teach step, a box is chosen
at random and a ball placed in it. Let Xn be the number of empty boxes afther the nth ball has been placed.
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1. Show that X : Ω→ XN is a DTMC, for a suitably defined Ω.

2. What are its transition probabilities?

Solution. 1. Observe that Xn+1 = Xn + Zn, where

Zn =

{
0, w.p. Xn

N ,

−1, w.p. N−Xn

N .

Hence, conditioned on Xn, Xn+1 ⊥ (X0, X1, . . . , Xn−1). Therefore, (Xn : n ≥ 0) is a DTMC.

2. Note that Xn ∈ {0, 1, 2, . . . , N}. For all n ≥ 0,

P (Xn+1 = j + 1 | Xn = j) = 0,

P (Xn+1 = j | Xn = j) =
j

N
,

P (Xn+1 = j | Xn = j − 1) =
N − j

N
,

and P (Xn+1 = s | Xn = j) = 0 o.w.


