
Tutorial-13: Invariant Distribution of Markov chains

1 Computation of invariant distribution

We will focus on finding the invariant distribution π ∈ M(X) of a time homogeneous discrete time
Markov chain X : Ω→ XZ+ , with transition probability P : X× X→ [0,1] such that the xth row is the
conditional distribution Px ∈M(X) with initial state X0 = x.

1.1 Global balance equations

Recall that π ∈M(X) is an invariant distribution if π = πP.

Example 1.1. Let the transition matrix be
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We can show that P is irreducible and aperiodic. Since it is finite state Markov chain, it follows that
it has a unique invariant distribution π, for which we get the set of linear equations

π0 =
1
4

π0 +
1
3

π2

π1 =
1
4

π0 +
1
3

π1 +
1
3

π2

π2 =
1
2

π0 +
2
3

π1 +
1
3

π2.

Solving them, we get π0 =
4
9 π2 and π1 =

6
9 π2. Since π0 + π1 + π2 = 1, then π2 =

9
19 . Therefore,

we can obtain the invariant distribution π = ( 4
19 , 6

19 , 9
19 ). Given the initial state X0 = 0, what is the

mean return time to state 0?

1.2 Cut balancing approach

Recall that each transition matrix can be represented by a transition graph G = (V, E,w), where
(i) the set of nodes V = X,

(ii) the set of edges E =
{
(x,y) ∈ X×X : pxy > 0

}
, and

(iii) the weight function w : E→ [0,1] defined by w(x,y) = px,y for all edges (x,y) ∈ E.

Definition 1.2. A cut of a graph G = (V, E,w) is defined by a partition (A,V \ A) of vertices. A cut
determines the cut-set that consists of edges with one node in each partition. That is,

E(A), {(x,y) ∈ E : x ∈ A,y ∈ Ac} .

Remark 1. For a connected graph, each cut-set determines a unique cut.

Theorem 1.3. At stationarity of a time homogeneous Markov chain X, the probability flux balances across any
cut A ⊆ X. That is,

∑
(x,y)∈E(A)

πx pxy = ∑
(y,x)∈E(Ac)

πy pyx.

1



Proof. We can write the LHS of the above equation as

∑
(x,y)∈E(A)

πx pxy = ∑
x∈A

∑
y∈Ac

πx pxy = ∑
y∈Ac

∑
x∈X

πx pxy − ∑
y∈Ac

∑
x∈Ac

πx pxy = ∑
y∈Ac

πy − ∑
y∈Ac

∑
x∈Ac

πx pxy.

We can write the RHS of the above equation as

∑
(y,x)∈E(Ac)

πy pyx = ∑
y∈Ac

πy ∑
x∈A

pyx = ∑
y∈Ac

πy ∑
x∈X

pyx − ∑
y∈Ac

∑
x∈Ac

πy pyx = ∑
y∈Ac

πy − ∑
y∈Ac

∑
x∈Ac

πx pxy.

Example 1.4 (Birth-death processes). Consider a homogeneous DTMC X : Ω→ XZ+ with ordered
state space X⊆Z+ and the transition probability matrix P such that px,y = 0 for all |y− x|> 1. For
each state x, we take cut Ax = {y ∈ X : y 6 x}. Balancing the probability flux across the cuts, we get

πx px,x+1 = πx+1 px+1,x.

For example, consider the state space X = Z+ and for some 0 6 α < β < 1− α. If the birth-death
process has transition probability matrix P such that px,x+1 = α for all x > 0, and px,x−1 = β for all
x ∈N and p0,0 = 1− α. Then, we observe that

πx =
( α

β

)x
π0, x ∈N.

Since ∑x∈Z+
πx = 1, we get π0 =

1
1− α

β
.

1.3 Transform approach

Definition 1.5. Each distribution ν ∈M(Z+) is completely determined by its z-transform defined by

Ψν(z), ∑
x∈Z+

zxνx, |z| < 1.

From the global balance equation for a homogeneous Markov chain X with state space Z+, we can
write its z-transform as

Ψπ(z) = ∑
y∈Z+

πyzy = ∑
y∈Z+

zy ∑
x∈Z+

πx pxy = ∑
x∈Z+

πxΨPx (z).

In some cases, it is easy to compute ΨPx (z), and we will be able to get an explicit z-transform for Ψπ(z)
which we will be able to invert to get the invariant distribution π

Example 1.6 (Homogeneous birth-death processes). For x = 0, we have Px = (1− α,α,0, . . . ). For
x ∈N, we have Px = βex−1 + (1− α− β)ex + αex+1. Therefore, ΨPx (z) = (1− α) + αz for x = 0 and

ΨPx (z) = βzx−1 + (1− α− β)zx + αzx+1, x ∈N.

Therefore, we can write

Ψπ(z) = ∑
x∈Z+

πxΨPx (z) = π0(1− α + αz) + ∑
x∈N

πx(βzx−1 + (1− α− β)zx + αzx+1)

= (1− α− β)Ψπ(z) + βπ0 + αzΨπ(z) + z−1β(Ψπ(z)− π0).

Aggregating these results, we get

Ψπ(z) = π0
β(z− 1)

β(z− 1)− αz(z− 1)
= π0

1
1− α

β z
.

Inverting the z-transform for α < β, we get

πx = π0

( α

β

)x
, x ∈Z+.
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