Tutorial-13: Invariant Distribution of Markov chains

1 Computation of invariant distribution

We will focus on finding the invariant distribution $\pi \in \mathcal{M}(X)$ of a time homogeneous discrete time Markov chain $X: \Omega \rightarrow X^{Z_{+}}$, with transition probability $P: X \times X \rightarrow[0,1]$ such that the x th row is the conditional distribution $P_{x} \in \mathcal{M}(X)$ with initial state $X_{0}=x$.

1.1 Global balance equations

Recall that $\pi \in \mathcal{M}(X)$ is an invariant distribution if $\pi=\pi P$.

Example 1.1. Let the transition matrix be

$$
P=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
0 & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} .
\end{array}\right]
$$

We can show that P is irreducible and aperiodic. Since it is finite state Markov chain, it follows that it has a unique invariant distribution π, for which we get the set of linear equations

$$
\begin{aligned}
\pi_{0} & =\frac{1}{4} \pi_{0}+\frac{1}{3} \pi_{2} \\
\pi_{1} & =\frac{1}{4} \pi_{0}+\frac{1}{3} \pi_{1}+\frac{1}{3} \pi_{2} \\
\pi_{2} & =\frac{1}{2} \pi_{0}+\frac{2}{3} \pi_{1}+\frac{1}{3} \pi_{2}
\end{aligned}
$$

Solving them, we get $\pi_{0}=\frac{4}{9} \pi_{2}$ and $\pi_{1}=\frac{6}{9} \pi_{2}$. Since $\pi_{0}+\pi_{1}+\pi_{2}=1$, then $\pi_{2}=\frac{9}{19}$. Therefore, we can obtain the invariant distribution $\pi=\left(\frac{4}{19}, \frac{6}{19}, \frac{9}{19}\right)$. Given the initial state $X_{0}=0$, what is the mean return time to state 0 ?

1.2 Cut balancing approach

Recall that each transition matrix can be represented by a transition graph $G=(V, E, w)$, where
(i) the set of nodes $V=X$,
(ii) the set of edges $E=\left\{(x, y) \in \mathcal{X} \times \mathcal{X}: p_{x y}>0\right\}$, and
(iii) the weight function $w: E \rightarrow[0,1]$ defined by $w(x, y)=p_{x, y}$ for all edges $(x, y) \in E$.

Definition 1.2. A cut of a graph $G=(V, E, w)$ is defined by a partition $(A, V \backslash A)$ of vertices. A cut determines the cut-set that consists of edges with one node in each partition. That is,

$$
E(A) \triangleq\left\{(x, y) \in E: x \in A, y \in A^{c}\right\}
$$

Remark 1. For a connected graph, each cut-set determines a unique cut.
Theorem 1.3. At stationarity of a time homogeneous Markov chain X, the probability flux balances across any cut $A \subseteq \mathcal{X}$. That is,

$$
\sum_{(x, y) \in E(A)} \pi_{x} p_{x y}=\sum_{(y, x) \in E\left(A^{c}\right)} \pi_{y} p_{y x} .
$$

Proof. We can write the LHS of the above equation as

$$
\sum_{(x, y) \in E(A)} \pi_{x} p_{x y}=\sum_{x \in A} \sum_{y \in A^{c}} \pi_{x} p_{x y}=\sum_{y \in A^{c}} \sum_{x \in X} \pi_{x} p_{x y}-\sum_{y \in A^{c}} \sum_{x \in A^{c}} \pi_{x} p_{x y}=\sum_{y \in A^{c}} \pi_{y}-\sum_{y \in A^{c}} \sum_{x \in A^{c}} \pi_{x} p_{x y} .
$$

We can write the RHS of the above equation as

$$
\sum_{(y, x) \in E\left(A^{c}\right)} \pi_{y} p_{y x}=\sum_{y \in A^{c}} \pi_{y} \sum_{x \in A} p_{y x}=\sum_{y \in A^{c}} \pi_{y} \sum_{x \in X} p_{y x}-\sum_{y \in A^{c}} \sum_{x \in A^{c}} \pi_{y} p_{y x}=\sum_{y \in A^{c}} \pi_{y}-\sum_{y \in A^{c}} \sum_{x \in A^{c}} \pi_{x} p_{x y} .
$$

Example 1.4 (Birth-death processes). Consider a homogeneous DTMC $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$with ordered state space $X \subseteq \mathbb{Z}_{+}$and the transition probability matrix P such that $p_{x, y}=0$ for all $|y-x|>1$. For each state x, we take cut $A_{x}=\{y \in \mathcal{X}: y \leqslant x\}$. Balancing the probability flux across the cuts, we get

$$
\pi_{x} p_{x, x+1}=\pi_{x+1} p_{x+1, x}
$$

For example, consider the state space $X=\mathbb{Z}_{+}$and for some $0 \leqslant \alpha<\beta<1-\alpha$. If the birth-death process has transition probability matrix P such that $p_{x, x+1}=\alpha$ for all $x \geqslant 0$, and $p_{x, x-1}=\beta$ for all $x \in \mathbb{N}$ and $p_{0,0}=1-\alpha$. Then, we observe that

$$
\pi_{x}=\left(\frac{\alpha}{\beta}\right)^{x} \pi_{0}, \quad x \in \mathbb{N} .
$$

Since $\sum_{x \in \mathbb{Z}_{+}} \pi_{x}=1$, we get $\pi_{0}=\frac{1}{1-\frac{\alpha}{\beta}}$.

1.3 Transform approach

Definition 1.5. Each distribution $v \in \mathcal{M}\left(\mathbb{Z}_{+}\right)$is completely determined by its z-transform defined by

$$
\Psi_{v}(z) \triangleq \sum_{x \in \mathbb{Z}_{+}} z^{x} v_{x}, \quad|z|<1
$$

From the global balance equation for a homogeneous Markov chain X with state space \mathbb{Z}_{+}, we can write its z-transform as

$$
\Psi_{\pi}(z)=\sum_{y \in \mathbb{Z}_{+}} \pi_{y} z^{y}=\sum_{y \in \mathbb{Z}_{+}} z^{y} \sum_{x \in Z_{+}} \pi_{x} p_{x y}=\sum_{x \in \mathbb{Z}_{+}} \pi_{x} \Psi_{P_{x}}(z)
$$

In some cases, it is easy to compute $\Psi_{P_{x}}(z)$, and we will be able to get an explicit z-transform for $\Psi_{\pi}(z)$ which we will be able to invert to get the invariant distribution π

Example 1.6 (Homogeneous birth-death processes). For $x=0$, we have $P_{x}=(1-\alpha, \alpha, 0, \ldots)$. For $x \in \mathbb{N}$, we have $P_{x}=\beta e_{x-1}+(1-\alpha-\beta) e_{x}+\alpha e_{x+1}$. Therefore, $\Psi_{P_{x}}(z)=(1-\alpha)+\alpha z$ for $x=0$ and

$$
\Psi_{P_{x}}(z)=\beta z^{x-1}+(1-\alpha-\beta) z^{x}+\alpha z^{x+1}, \quad x \in \mathbb{N} .
$$

Therefore, we can write

$$
\begin{aligned}
\Psi_{\pi}(z) & =\sum_{x \in \mathbb{Z}_{+}} \pi_{x} \Psi_{P_{x}}(z)=\pi_{0}(1-\alpha+\alpha z)+\sum_{x \in \mathbb{N}} \pi_{x}\left(\beta z^{x-1}+(1-\alpha-\beta) z^{x}+\alpha z^{x+1}\right) \\
& =(1-\alpha-\beta) \Psi_{\pi}(z)+\beta \pi_{0}+\alpha z \Psi_{\pi}(z)+z^{-1} \beta\left(\Psi_{\pi}(z)-\pi_{0}\right)
\end{aligned}
$$

Aggregating these results, we get

$$
\Psi_{\pi}(z)=\pi_{0} \frac{\beta(z-1)}{\beta(z-1)-\alpha z(z-1)}=\pi_{0} \frac{1}{1-\frac{\alpha}{\beta} z} .
$$

Inverting the z-transform for $\alpha<\beta$, we get

$$
\pi_{x}=\pi_{0}\left(\frac{\alpha}{\beta}\right)^{x}, \quad x \in \mathbb{Z}_{+} .
$$

