
Lecture-01: Probability Review

1 Probability Review
Definition 1.1. A probability space (Ω,F,P) consists of set of all possible outcomes called a sample space
and denoted by Ω, a collection of subsets F of sample space called event space, and a non-negative set function
probability P : F→ [0,1], with the following properties.

1. Event space F is a σ -algebra, that is it contains an empty set and is closed under complements and countable
unions.

2. Set function P satisfies P(Ω) = 1, and is additive for countably disjoint events.

An element of the sample space is called an outcome and an element of event space is called an event.

Example 1.2 (Discrete σ -algebra). For a finite sample space Ω, the event space F = {A : A⊆Ω} consists
of all subsets of sample space Ω.

Example 1.3 (Borel σ -algebra). If the sample space Ω = R, then a Borel σ -algebra is generated by half-
open intervals by complements and countable unions. That is, B = σ({(−∞,x] : x ∈ R}). We make the
following observations.

1. From closure under complements, the open interval (x,∞) belong to B for each x ∈ R.

2. From closure under countable unions, the open interval (−∞,x) = ∪n∈N(−∞,x− 1
n ] belongs to B for

each x ∈ R.

3. From closure under countable intersections, the singleton {x}=
⋂

n∈N([x− 1
n ,∞)∩(−∞,x+ 1

n ]) belongs
to B for each x ∈ R.

There is a natural order of inclusion on sets through which we can define monotonicity of probability set
function P. To define continuity of this set function, we define limits of sets.

Definition 1.4. For a sequence of sets (An : n∈N), we define limit superior and limit inferior of this set sequence
respectively as

limsup
n

An =
⋂

n∈N

⋃
k>n

Ak, liminf
n

An =
⋃

n∈N

⋂
k>n

Ak.

It is easy to check that liminfAn ⊆ limsupAn. We say that limit of set sequence exists if limsupAn ⊆ liminfAn,
and the limit of the set sequence in this case is limsupAn.

Theorem 1.5. Probability set function is monotone and continuous.

Proof. Consider two events A⊆ B both elements of F, then from the additivity of probability over disjoint events
A and B\A, we have

P(B) = P(A∪B\A) = P(A)+P(B\A)> P(A).

Monotonicity follows from non-negativity of probability set function, that is since P(B \A) > 0. For continuity
from below, we take an increasing sequence of sets (An : n ∈ N), such that An ⊆ An+1 for all n. Then, it is clear
that An ↑ A = ∪nAn. We can define disjoint sets (En : n ∈ N), where

E1 = A1, En = An \An−1, n > 2.
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The disjoint sets En’s satisfy ∪n
i=1Ei = An for all n ∈ N and ∪nEn = ∪nAn. From the above property and the

additivity of probability set function over disjoint sets, it follows that

P(A) = P(∪nEn) = ∑
n∈N

P(En) = lim
n∈N

n

∑
i=1

P(Ei) = lim
n∈N

P∪n
i=1 Ei = lim

n∈N
P(An).

For continuity from below, we take decreasing sequence of sets (An : n ∈ N), such that An+1 ⊆ An for all n. We
can form increasing sequence of sets (Bn : n ∈ N) where Bn = Ac

n. Then, the continuity from above follows
from continuity from above. Continuity of probability for general sequence of converging sets follows from the
definition of limsup and liminf of sequence of sets and the continuity of probability function from above and
below.

1.1 Independence
Definition 1.6. For a probability space (Ω,F,P), two events A,B ∈ F are independent events if

P(A∩B) = P(A)P(B). (1)

Definition 1.7. A collection of events E⊆ F is called a sub-event space if it is a σ -algebra.

Definition 1.8. Two sub-event spaces G and H are called independent if any pair of events (G,H) ∈ G×H are
independent. That is,

P(G∩H) = P(G)P(H), G ∈ G,H ∈H.

1.2 Conditional Probability
Definition 1.9. Let (Ω,F,P) be a probability space. For events A,B ∈ F such that 1 > P(B)> 0, the conditional
probability of event A given event B is defined as

P(A|B) = P(A∩B)
P(B)

.

Knowing P(A|B), we also know P(A|Bc) if P(B)< 1. Indeed, we can compute P(A|Bc) in terms of P(A|B) as

P(A|Bc) =
P(A∩Bc)

P(Bc)
=

P(A)−P(A∩B)
1−P(B)

=
P(A)−P(B)P(A|B)

1−P(B)
. (2)

We can check that P(A∩Ω) = P(A)P(Ω) and P(A∩ /0) = P(A)P( /0). Therefore, we can define P(A|Ω) = P(A)
and P(A| /0) = P(A). Hence, if we know the conditional probability on an event B ∈ F, we know the conditional
probability on the event subspace { /0,B,Bc,Ω}.

Definition 1.10. We can define conditional probability of event A on a sub-event space E by the collection
(P(A

∣∣ E) : E ∈ E).

2 Random variables
Definition 2.1. A real valued random variable X on a probability space (Ω,F,P) is a function X : Ω→ R such
that for every x ∈ R, we have

X−1(−∞,x], {ω ∈Ω : X(ω)6 x} ∈ F.

Recall that the collection ((−∞,x] : x ∈ R) generates the Borel σ -algebra B(R). Therefore, it follows that
X−1(B)⊆ F, since set inverse map X−1 preserves complements, unions, and intersections.

Definition 2.2. For a random variable X defined on the probability space (Ω,F,P), we define σ(X) is the smallest
σ -algebra formed by inverse mapping of Borel sets, i.e.

σ(X), σ(X−1(−∞,x] : x ∈ R).

Note that σ(X) is a sub-event space of F and hence probability is defined for each element of σ(X).

Definition 2.3. For a random variable X defined on probability space (Ω,F,P), The distribution function F :
R→ [0,1] for this random variable X is defined as

F(x) = (P◦X−1)(−∞,x], for all x ∈ R.
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Theorem 2.4. Distribution function F of a random variable X is non-negative, monotone increasing, continuous
from the right, and has countable points of discontinuities. Further, if P◦X−1(R) = 1, then

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.

Proof. Non-negativity and monotonicity of distribution function follows from non-negativity and monotonicity of
probability set function, and the fact that for x1 < x2

X−1(−∞,x1]⊆ X−1(−∞,x2].

Let xn ↓ x be a decreasing sequence of real numbers. We take decreasing sets (An ∈ F : n ∈ N), where An =
X−1(−∞,xn] ∈ F. The right continuity of distribution function follows from the continuity from above of proba-
bility set functions.

Example 2.5. One of the simplest family of random variables are indicator functions 1 : F×Ω→ (0,1). For
each event A ∈ F, we can define an indicator function as

1A(ω) =

{
1, ω ∈ A,
0, ω /∈ A.

We make the following observations.

1. 1A is a random variable for each A ∈ F. This follows from the fact that

1
−1
A (−∞,x] =


/0, x < 0,
Ac, x ∈ [0,1),
Ω,x > 1.

2. The distribution function F for the random variable 1A is given by

F(x) =


0, x < 0,
P(Ac), x ∈ [0,1),
1, x > 1.

2.1 Expectation
Let g : R→ R be a Borel measurable function, i.e. g−1(−∞,x] ∈ B for all x ∈ R. Then, the expectation of g(X)
for a random variable X with distribution function F is defined as

Eg(X) =
∫

x∈R
g(x)dF(x).

Remark 1. Recall that probabilities are defined only for events. For a random variable X , the probabilities are
defined for generating events X−1(−∞,x] ∈ F by F(x) = P◦X−1(−∞,x].

Remark 2. The expectation is only defined for random variables. For an event A, the probability P(A) equals
expectation of the indicator random variable 1A.

2.2 Random Vectors
Definition 2.6. If X1, . . . ,Xn are random variables defined on the same probability space (Ω,F,P), then the vector
X , (X1, . . . ,Xn) is a random mapping Ω→ Rn and is called a random vector. Since each Xi is a random variable,
the joint event ∩i∈[n]X

−1
i (−∞,xi] ∈ F, and the joint distribution of random vector X is defined as

FX (x1, . . . ,xn) = P
(
∩i∈[n]X

−1
i (−∞,xi]

)
, for all x ∈ Rn.

Definition 2.7. A random variable X is independent of the event subspace E, if σ(X) and E are independent
event subspaces.
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Remark 3. Since σ(X) is generated by the collection (X−1(−∞,x] : x ∈ R), it follows that X is independent of E
if and any if for all x ∈ R and event E ∈ E,

E[1{X6x}1E ] = P({X 6 x}∩E) = P({X 6 x})P(E) = E1{X6x}E1A.

Definition 2.8. Two random variables X ,Y are independent if σ(X) and σ(Y ) are independent event subspaces.

Remark 4. Since σ(X) and σ(Y ) are generated by collections (X−1(−∞,x] : x ∈ R) and (Y−1(−∞,y] : y ∈ R), it
follows that the random variables X ,Y are independent if and only if for all x,y ∈ R, we have

FX ,Y (x,y) = FX (x)FY (y).

Definition 2.9. A random vector X : Ω→Rn is independent if the joint distribution is product of marginals. That
is,

FX (x) =
n

∏
i=1

FXi(xi), for all x ∈ Rn.
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