Lecture-02: Conditional Expectation

1 Conditional expectation

Consider a probability space (Ω, \mathcal{F}, P) .

Definition 1.1. For a random variable X, the conditional distribution conditioned on an event $E \in \mathcal{F}$ is given by

$$F_{X|E}(x) \triangleq rac{P(\{X \leqslant x\} \cap E)}{P(E)}.$$

Remark 1. We can verify that $F_{X|E} : \mathbb{R} \to [0,1]$ is a distribution function for any $E \in \mathcal{F}$.

Definition 1.2. For any Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ and a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) , the conditional expectation of a random variable g(X) given an event *E* is given by

$$\mathbb{E}[g(X) \mid E] = \int_{x \in \mathbb{R}} g(x) dF_{X|E}(x).$$

Remark 2. For a random variable *X* and a sub-event space $\mathcal{E} \subseteq \mathcal{F}$, the conditional distribution of *X* conditioned on an event $E \in \mathcal{E}$ is given by $F_{X|E} \in [0,1]^{\mathbb{R}}$. Therefore, we have a collection of distribution functions ($F_{X|E} \in [0,1]^{\mathbb{R}} : E \in \mathcal{E}$). Similarly, the conditional expectation of the random variable *X* given any event $E \in \mathcal{E}$ is $\mathbb{E}[X|E]$, and we have a collection ($\mathbb{E}[X \mid E] : E \in \mathcal{E}$) for the sub-event space \mathcal{E} .

We can generalize the conditional expectation definition for all events in an event subspace $\mathcal{E} \subseteq \mathcal{F}$.

Definition 1.3. The conditional expectation of X given event subspace \mathcal{E} is denoted $\mathbb{E}[X|\mathcal{E}]$ and is a random variable $Z = \mathbb{E}[X|\mathcal{E}]$ where

1_ measurability: For each *B* ∈ $\mathcal{B}(\mathbb{R})$, we have *Z*⁻¹(*B*) ∈ \mathcal{E} , and

2_ integrability: for each event $E \in \mathcal{E}$, we have $\mathbb{E}[X \mathbb{1}_E] = \mathbb{E}[Z \mathbb{1}_E]$.

Remark 3. Any random variable $Z : \Omega \to \mathbb{R}$ that satisfies above two properties is the conditional expectation of *X* given the sub-event space \mathcal{E} from the a.s. uniqueness of conditional expectations.

Remark 4. Intuitively, we think of the event subspace \mathcal{E} as describing the information we have. For each $A \in \mathcal{E}$, we know whether or not *A* has occurred. The conditional expectation $\mathbb{E}[X|\mathcal{E}]$ is the "best guess" of the value of *X* given the information \mathcal{E} .

Example 1.4. Consider two random variables *X*, *Y* defined on the same probability space (Ω, \mathcal{F}, P) with the joint distribution $F_{X,Y}(x,y) = P(\{X \le x, Y \le y\})$. The conditional expectation of *X* given *Y* is defined as

$$\mathbb{E}[X|Y] \triangleq \mathbb{E}[X|\sigma(Y)].$$

Since any Borel measurable set $B \in \mathcal{B}(\mathbb{R})$ is generated by half-open sets $(-\infty, y] \in \mathcal{B}(\mathbb{R})$ for $y \in \mathbb{R}$, any event $A \in \sigma(Y)$ is generated by the collection of events $(G_y \triangleq Y^{-1}(-\infty, y] \in \sigma(Y) : y \in \mathbb{R})$. For each $y \in \mathbb{R}$ such that $F_Y(y) = P(G_y) > 0$, we can write the conditional distribution of *X* given the event E_y as

$$F_{X|G_y}(x) = \frac{F_{X,Y}(x,y)}{F_Y(y)}.$$

The conditional expectation of X given the event G_v is defined as

$$\mathbb{E}[X|G_y] = \int_{x \in \mathbb{R}} x dF_{X|G_y}(x) = \int_{x \in \mathbb{R}} x \frac{d_x F_{X,Y}(x,y)}{F_Y(y)}.$$

We observe that $\mathbb{E}[X \mid E]$ can be evaluated for any event $E \in \sigma(Y)$ such that P(E) > 0. This implies that $\mathbb{E}[X \mid E] : \Omega \to \mathbb{R}$ is a $\sigma(Y)$ -measurable random variable. We further observe that

$$\mathbb{E}[\mathbb{E}[X|G_y]\mathbb{1}_{G_y}] = \mathbb{E}[X|G_y]F_Y(y) = \int_{x \in \mathbb{R}} x d_x F_{X,Y}(x,y) = \mathbb{E}[X\mathbb{1}_{G_y}].$$

Proposition 1.5. Let *X*, *Y* be random variables on the probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$. Let \mathcal{G} and \mathcal{H} be sub-event spaces of \mathcal{F} . Then

- 1. *linearity:* $\mathbb{E}[\alpha X + \beta Y \mid \Im] = \alpha \mathbb{E}[X \mid \Im] + \beta E[Y \mid \Im], a.s.$
- 2. *monotonicity:* If $X \leq Y$ a.s., then $\mathbb{E}[X \mid \mathcal{G}] \leq E[Y \mid \mathcal{G}]$, a.s.
- 3. *identity:* If X is \mathfrak{G} -measurable and $\mathbb{E}|X| < \infty$, then $X = \mathbb{E}[X \mid \mathfrak{G}]$ a.s. In particular, $c = \mathbb{E}[c \mid \mathfrak{G}]$, for any constant $c \in \mathbb{R}$.
- 4. *pulling out what's known:* If Y is \mathfrak{G} -measurable and $\mathbb{E}|XY| < \infty$, then $\mathbb{E}[XY \mid \mathfrak{G}] = Y\mathbb{E}[X \mid \mathfrak{G}]$, a.s.
- 5. L²-projection: If $\mathbb{E}|X|^2 < \infty$, then $\zeta^* = \mathbb{E}[X \mid \mathcal{G}]$ minimizes $\mathbb{E}[(X \zeta)^2]$ over all \mathcal{G} -measurable random variables ζ such that $\mathbb{E}|\zeta|^2 < \infty$.
- 6. *tower property:* If $\mathcal{H} \subseteq \mathcal{G}$, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}]$, *a.s.*.
- 7. *irrelevance of independent information:* If \mathcal{H} *is independent of* $\sigma(\mathcal{G}, \sigma(X))$ *then*

$$\mathbb{E}[X|\sigma(\mathfrak{G},\mathcal{H})] = \mathbb{E}[X \mid \mathfrak{G}], a.s.$$

In particular, if X is independent of \mathcal{H} , then $\mathbb{E}[X \mid \mathcal{H}] = \mathbb{E}[X]$, a.s.

Proof. Let *X*, *Y* be random variables on the probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$. Let \mathcal{G} and \mathcal{H} be event spaces such that $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$.

1. **linearity:** Let $Z \triangleq \alpha \mathbb{E}[X \mid \mathcal{G}] + \beta \mathbb{E}[Y \mid \mathcal{G}]$, then since $\mathbb{E}[X \mid \mathcal{G}], \mathbb{E}[Y \in \mathcal{G}]$ are \mathcal{G} -measurable, it follows that their linear combination *Z* is also \mathcal{G} -measurable. Further, for any event $F \in \mathcal{G}$, from the linearity of expectation and definition of conditional expectation, we have

$$\mathbb{E}[Z\mathbb{1}_G] = \alpha \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_G] + \beta \mathbb{E}[\mathbb{E}[Y \mid \mathcal{G}]\mathbb{1}_G] = \mathbb{E}[(\alpha X + \beta Y)\mathbb{1}_G].$$

2. monotonicity: Let $\varepsilon > 0$ and define $A_{\varepsilon} \triangleq \{\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[Y \mid \mathcal{G}] > \varepsilon\} \in \mathcal{G}$. Then from the definition of conditional expectation, we have

$$0 \leq \mathbb{E}[(\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[Y \mid \mathcal{G}])\mathbb{1}_{A_{\mathcal{E}}}] = \mathbb{E}[(X - Y)\mathbb{1}_{A_{\mathcal{E}}}] \leq 0.$$

Thus, we obtain that $P(A_{\varepsilon}) = 0$ for all $\varepsilon > 0$.

- identity: It follows from the definition that X satisfies all three conditions for conditional expectation. The event space generated by any constant function is the trivial event space {∅, Ω} ⊆ 𝔅 for any event space. Hence, E[c | 𝔅] = c.
- 4. **pulling out what's known:** Let *Y* be \mathcal{G} -measurable and $\mathbb{E}|XY| < \infty$, then we need to show that $\mathbb{E}[XY\mathbb{1}_G] = \mathbb{E}[Y\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_G]$, for all events $G \in \mathcal{G}$.

It suffices to show that $\mathbb{E}[ZX] = \mathbb{E}[Z\mathbb{E}[X \mid G]]$ for any simple G-measurable random variable Z with $\mathbb{E}|ZX| < \infty$, from which the previous statement follows for $Z = Y \mathbb{1}_G$.

Let $Z = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{A_k}$ for $(A_1, \dots, A_n) \subset \mathcal{G}$, then the result is a consequence of the definition of conditional expectation and linearity.

5. L²-projection: We can write for \mathcal{G} measurable functions ζ, ζ^* such that $\mathbb{E}\zeta^2, \mathbb{E}(\zeta^*)^2 < \infty$, from the linearity of expectation

$$\mathbb{E}(X-\zeta)^2 = \mathbb{E}(X-\zeta^*)^2 + \mathbb{E}(\zeta-\zeta^*)^2 - 2\mathbb{E}(X-\zeta^*)(\zeta-\zeta^*).$$

It is enough to show that $X - \mathbb{E}[X \mid \mathcal{G}]$ is orthogonal to all \mathcal{G} -measurable ζ such that $\mathbb{E}\zeta^2 < \infty$. Towards this end, we observe that for \mathcal{G} measurable function ζ such that $\mathbb{E}\zeta^2 < \infty$, we have

$$\mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{G}])\zeta] = \mathbb{E}[\zeta X] - E[\zeta \mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[\zeta X] - E[E[\zeta X \mid \mathcal{G}]] = 0.$$

This implies that $\mathbb{E}(X - \zeta)^2 \ge \mathbb{E}(X - \zeta^*)^2$ for all \mathcal{G} measurable random variables ζ that have finite second moment.

6. tower property: From the definition of conditional expectation, we know that $\mathbb{E}[X \mid \mathcal{H}]$ is \mathcal{H} measurable, and we can verify that the mean of absolute value is finite. Let $H \in \mathcal{H} \subseteq \mathcal{G}$, then from the definition of conditional expectation, we see that

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mathbb{1}_H] = \mathbb{E}[X \mathbb{1}_H] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{H}] \mathbb{1}_H].$$

7. **irrelevance of independent information:** We assume $X \ge 0$ and show that

$$\mathbb{E}[X \mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mathbb{1}_A], \text{ a.s. for all } A \in \sigma(\mathcal{G}, \mathcal{H}).$$

It suffices to show for $A = G \cap H$ where $G \in \mathcal{G}$ and $H \in \mathcal{H}$. We show that

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G \cap H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G}\mathbb{1}_{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G}]E[\mathbb{1}_{H}] = \mathbb{E}[X\mathbb{1}_{G}]\mathbb{E}[\mathbb{1}_{H}] = \mathbb{E}[X\mathbb{1}_{G \cap H}]$$

Example 1.6 (Conditioning on indicator random variables). Let *X* be a random variable defined on the probability space (Ω, \mathcal{F}, P) , and $E \in \mathcal{F}$ be an event, then

$$\mathbb{E}[X|\mathbb{1}_E] = \mathbb{E}[X|E]\mathbb{1}_E + \mathbb{E}[X|E^c]\mathbb{1}_{E^c} \text{ a.s.}$$

The σ -algebra generated by the indicator random variable $\mathbb{1}_E$ is

$$\mathcal{E} \triangleq \boldsymbol{\sigma}(\mathbb{1}_E) = \{ \boldsymbol{\emptyset}, \boldsymbol{\Omega}, \boldsymbol{E}, \boldsymbol{E}^c \}$$

We first observe that RHS is an E measurable random-variable. Second, we observe that

$$\mathbb{E}[X\mathbb{1}_E] = \mathbb{E}[\mathbb{E}[X|E]\mathbb{1}_E], \qquad \qquad \mathbb{E}[X\mathbb{1}_{E^c}] = \mathbb{E}[\mathbb{E}[X|E^c]\mathbb{1}_{E^c}.$$

Example 1.7 (Conditioning on simple random variables). Consider two random variables *X*, *Y* defined on the same probability space (Ω, \mathcal{F}, P) , where *Y* is a simple random variable such that

$$Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{E_y} \text{ for a finite alphabet } \mathcal{Y} \subset \mathbb{R},$$

such that $E_y \triangleq Y^{-1}(\{y\}) \in \sigma(Y) \subseteq \mathcal{F}$ and $p_y \triangleq P(E_y) > 0$. The collection $(E_y \in \mathcal{F} : y \in \mathcal{Y})$ forms a finite partition of the outcome space Ω . Further, we observe that $\sigma(Y) = \{\bigcup_{y \in F} E_y \in \mathcal{F} : F \subseteq \mathcal{Y}\}$. The conditional distribution of *X* given the event E_y is

$$F_{X|E_y}(x) = \frac{P(\{X \le x, Y = y\})}{p_y}$$

The conditional expectation of X given the event E_y is defined as

$$\mathbb{E}[X|E_y] = \mathbb{E}[X|Y=y] = \int_{x \in \mathbb{R}} x dF_{X|E_y}(x) = \int_{x \in \mathbb{R}} x \int_{z=y} \frac{dF_{X,Y}(x,z)}{P(E_y)} = \frac{\mathbb{E}[X \mathbbm{1}_{E_y}]}{P(E_y)}.$$

Since $P(E_v) > 0$, from the Example 1.4, we can see that

$$\mathbb{E}[X\mathbb{1}_{E_{y}}] = \mathbb{E}[\mathbb{E}[X|E_{y}]\mathbb{1}_{E_{y}}], \text{ for all } y \in \mathcal{Y}.$$

From the definition of conditional expectation, it follows that $\mathbb{E}[X|Y]\mathbb{1}_{E_y} = \mathbb{E}[X|E_y]\mathbb{1}_{E_y}$ for each $y \in \mathcal{Y}$. It follows that the conditional expectation of X given Y is

$$\mathbb{E}[X|Y] = \sum_{y \in \mathcal{Y}} \mathbb{E}[X \mathbb{1}_{E_y}|Y] = \sum_{y \in \mathcal{Y}} \mathbb{E}[X|E_y] \mathbb{1}_{E_y}.$$