
Lecture-02: Conditional Expectation

1 Conditional expectation
Consider a probability space (Ω,F,P).

Definition 1.1. For a random variable X , the conditional distribution conditioned on an event E ∈ F is given by

FX |E(x),
P({X 6 x}∩E)

P(E)
.

Remark 1. We can verify that F
X
∣∣ E

: R→ [0,1] is a distribution function for any E ∈ F.

Definition 1.2. For any Borel measurable function g : R→ R and a random variable X : Ω→ R defined on the
probability space (Ω,F,P), the conditional expectation of a random variable g(X) given an event E is given by

E[g(X)
∣∣ E] =

∫
x∈R

g(x)dFX |E(x).

Remark 2. For a random variable X and a sub-event space E ⊆ F, the conditional distribution of X conditioned
on an event E ∈ E is given by FX |E ∈ [0,1]R. Therefore, we have a a collection of distribution functions (FX |E ∈
[0,1]R : E ∈ E). Similarly, the conditional expectation of the random variable X given any event E ∈ E is E[X |E],
and we have a collection (E[X

∣∣ E] : E ∈ E) for the sub-event space E.

We can generalize the conditional expectation definition for all events in an event subspace E⊆ F.

Definition 1.3. The conditional expectation of X given event subspace E is denoted E[X |E] and is a random
variable Z = E[X |E] where

1 measurability: For each B ∈B(R), we have Z−1(B) ∈ E, and

2 integrability: for each event E ∈ E, we have E[X1E ] = E[Z1E ].

Remark 3. Any random variable Z : Ω→ R that satisfies above two properties is the conditional expectation of X
given the sub-event space E from the a.s. uniqueness of conditional expectations.

Remark 4. Intuitively, we think of the event subspace E as describing the information we have. For each A ∈ E,
we know whether or not A has occurred. The conditional expectation E[X |E] is the “best guess” of the value of X
given the information E.

Example 1.4. Consider two random variables X ,Y defined on the same probability space (Ω,F,P) with the
joint distribution FX ,Y (x,y) = P({X 6 x,Y 6 y}). The conditional expectation of X given Y is defined as

E[X |Y ], E[X |σ(Y )].

Since any Borel measurable set B ∈B(R) is generated by half-open sets (−∞,y] ∈B(R) for y ∈R, any event
A ∈ σ(Y ) is generated by the collection of events (Gy , Y−1(−∞,y] ∈ σ(Y ) : y ∈ R). For each y ∈ R such
that FY (y) = P(Gy)> 0, we can write the conditional distribution of X given the event Ey as

FX |Gy(x) =
FX ,Y (x,y)

FY (y)
.

The conditional expectation of X given the event Gy is defined as

E[X |Gy] =
∫

x∈R
xdFX |Gy(x) =

∫
x∈R

x
dxFX ,Y (x,y)

FY (y)
.
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We observe that E[X
∣∣ E] can be evaluated for any event E ∈ σ(Y ) such that P(E) > 0. This implies that

E[X
∣∣ E] : Ω→ R is a σ(Y )-measurable random variable. We further observe that

E[E[X |Gy]1Gy ] = E[X |Gy]FY (y) =
∫

x∈R
xdxFX ,Y (x,y) = E[X1Gy ].

Proposition 1.5. Let X ,Y be random variables on the probability space (Ω,F,P) such that E |X | ,E |Y |< ∞. Let
G and H be sub-event spaces of F. Then

1. linearity: E[αX +βY
∣∣ G] = αE[X

∣∣ G]+βE[Y
∣∣ G], a.s.

2. monotonicity: If X 6 Y a.s., then E[X
∣∣ G]6 E[Y

∣∣ G], a.s.

3. identity: If X is G-measurable and E |X | < ∞, then X = E[X
∣∣ G] a.s. In particular, c = E[c

∣∣ G], for any
constant c ∈ R.

4. pulling out what’s known: If Y is G-measurable and E |XY |< ∞, then E[XY
∣∣ G] = YE[X

∣∣ G], a.s.

5. L2-projection: If E |X |2 < ∞, then ζ ∗ = E[X
∣∣ G] minimizes E[(X − ζ )2] over all G-measurable random

variables ζ such that E |ζ |2 < ∞.

6. tower property: If H ⊆ G, then E[E[X
∣∣ G] ∣∣H] = E[X

∣∣H], a.s..

7. irrelevance of independent information: If H is independent of σ(G,σ(X)) then

E[X |σ(G,H)] = E[X
∣∣ G], a.s.

In particular, if X is independent of H, then E[X
∣∣H] = E[X ], a.s.

Proof. Let X ,Y be random variables on the probability space (Ω,F,P) such that E |X | ,E |Y |< ∞. Let G and H be
event spaces such that G,H ⊆ F.

1. linearity: Let Z ,αE[X
∣∣G]+βE[Y

∣∣G], then since E[X
∣∣G],E[Y ∈G] are G-measurable, it follows that their

linear combination Z is also G-measurable. Further, for any event F ∈ G, from the linearity of expectation
and definition of conditional expectation, we have

E[Z1G] = αE[E[X
∣∣ G]1G]+βE[E[Y

∣∣ G]1G] = E[(αX +βY )1G].

2. monotonicity: Let ε > 0 and define Aε ,
{
E[X

∣∣ G]−E[Y
∣∣ G]> ε

}
∈ G. Then from the definition of

conditional expectation, we have

0 6 E[(E[X
∣∣ G]−E[Y

∣∣ G])1Aε
] = E[(X−Y )1Aε

]6 0.

Thus, we obtain that P(Aε) = 0 for all ε > 0.

3. identity: It follows from the definition that X satisfies all three conditions for conditional expectation. The
event space generated by any constant function is the trivial event space { /0,Ω} ⊆ G for any event space.
Hence, E[c

∣∣ G] = c.

4. pulling out what’s known: Let Y be G-measurable and E |XY |< ∞, then we need to show that E[XY1G] =
E[YE[X

∣∣ G]1G], for all events G ∈ G.

It suffices to show that E[ZX ] =E[ZE[X
∣∣ G]] for any simple G-measurable random variable Z with E |ZX |<

∞, from which the previous statement follows for Z = Y1G.

Let Z = ∑
n
k=1 αk1Ak for (A1, . . . ,An) ⊂ G, then the result is a consequence of the definition of conditional

expectation and linearity.

5. L2-projection: We can write for G measurable functions ζ ,ζ ∗ such that Eζ 2,E(ζ ∗)2 <∞, from the linearity
of expectation

E(X−ζ )2 = E(X−ζ
∗)2 +E(ζ −ζ

∗)2−2E(X−ζ
∗)(ζ −ζ

∗).

It is enough to show that X−E[X
∣∣ G] is orthogonal to all G-measurable ζ such that Eζ 2 < ∞. Towards this

end, we observe that for G measurable function ζ such that Eζ 2 < ∞, we have

E[(X−E[X
∣∣ G])ζ ] = E[ζ X ]−E[ζE[X

∣∣ G]] = E[ζ X ]−E[E[ζ X
∣∣ G]] = 0.

This implies that E(X −ζ )2 > E(X −ζ ∗)2 for all G measurable random variables ζ that have finite second
moment.
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6. tower property: From the definition of conditional expectation, we know that E[X
∣∣H] is H measurable,

and we can verify that the mean of absolute value is finite. Let H ∈ H ⊆ G, then from the definition of
conditional expectation, we see that

E[E[X
∣∣ G]1H ] = E[X1H ] = E[E[X

∣∣H]1H ].

7. irrelevance of independent information: We assume X > 0 and show that

E[X1A] = E[E[X
∣∣ G]1A], a.s. for all A ∈ σ(G,H).

It suffices to show for A = G∩H where G ∈ G and H ∈H. We show that

E[E[X
∣∣ G]1G∩H ] = E[E[X

∣∣ G]1G1H ] = E[E[X
∣∣ G]1G]E[1H ] = E[X1G]E[1H ] = E[X1G∩H ]

Example 1.6 (Conditioning on indicator random variables). Let X be a random variable defined on the
probability space (Ω,F,P), and E ∈ F be an event, then

E[X |1E ] = E[X |E]1E +E[X |Ec]1Ec a.s.

The σ -algebra generated by the indicator random variable 1E is

E, σ(1E) = { /0,Ω,E,Ec} .

We first observe that RHS is an E measurable random-variable. Second, we observe that

E[X1E ] = E[E[X |E]1E ], E[X1Ec ] = E[E[X |Ec]1Ec .

Example 1.7 (Conditioning on simple random variables). Consider two random variables X ,Y defined on
the same probability space (Ω,F,P), where Y is a simple random variable such that

Y = ∑
y∈Y

y1Ey for a finite alphabet Y⊂ R,

such that Ey , Y−1({y}) ∈ σ(Y ) ⊆ F and py , P(Ey) > 0. The collection (Ey ∈ F : y ∈ Y) forms a finite
partition of the outcome space Ω. Further, we observe that σ(Y ) =

{
∪y∈F Ey ∈ F : F ⊆ Y

}
. The conditional

distribution of X given the event Ey is

FX |Ey(x) =
P({X 6 x,Y = y})

py
.

The conditional expectation of X given the event Ey is defined as

E[X |Ey] = E[X |Y = y] =
∫

x∈R
xdFX |Ey(x) =

∫
x∈R

x
∫

z=y

dFX ,Y (x,z)
P(Ey)

=
E[X1Ey ]

P(Ey)
.

Since P(Ey)> 0, from the Example 1.4, we can see that

E[X1Ey ] = E[E[X |Ey]1Ey ], for all y ∈ Y.

From the definition of conditional expectation, it follows that E[X |Y ]1Ey = E[X |Ey]1Ey for each y ∈ Y. It
follows that the conditional expectation of X given Y is

E[X |Y ] = ∑
y∈Y

E[X1Ey |Y ] = ∑
y∈Y

E[X |Ey]1Ey .
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