Lecture-03: Stochastic Processess

1 Stochastic Processes

Definition 1.1 (Random process). Let (Ω, \mathcal{F}, P) be a probability space. For an arbitrary index set *T* and state space $\mathcal{X} \subseteq \mathbb{R}$, a **random process** is a measurable map $X : \Omega \to \mathcal{X}^T$. That is, for each outcome $\omega \in \Omega$, we have a function $X(\omega) : T \mapsto \mathcal{X}$ called the **sample path** or the **sample function** of the process *X*, also written as

$$X(\boldsymbol{\omega}) \triangleq (X_t(\boldsymbol{\omega}) \in \mathfrak{X} : t \in T).$$

1.1 Classification

State space \mathcal{X} can be countable or uncountable, corresponding to discrete or continuous valued process. If the index set *T* is countable, the stochastic process is called **discrete**-time stochastic process or random sequence. When the index set *T* is uncountable, it is called **continuous**-time stochastic process. The index set *T* doesn't have to be time, if the index set is space, and then the stochastic process is spatial process. When $T = \mathbb{R}^n \times [0, \infty)$, stochastic process *X* is a spatio-temporal process.

1.2 Measurability

For any finite subset $S \subseteq T$ and real vector $x \in \mathbb{R}^T$ such that $x_t = \infty$ for any $t \notin S$, we define a set

$$A(x) \triangleq \left\{ y \in \mathbb{R}^T : y_t \leqslant x_t \right\} = \underset{t \in T}{\times} (-\infty, x_t] = \underset{s \in S}{\times} (-\infty, x_s] \underset{t \notin S}{\times} \mathbb{R}.$$

Then, the measurability of the random process X implies that for any such set A(x), we have

$$X^{-1}(A(x)) = X^{-1} \sum_{t \in T} (-\infty, x_t] = \bigcap_{t \in T} X_t^{-1}(-\infty, x_t] = \bigcap_{s \in S} X_s^{-1}(-\infty, x_s] \in \mathcal{F}.$$

Remark 1. Realization of random process at each $t \in T$, is a random variable defined on the probability space (Ω, \mathcal{F}, P) such that $X_t : \Omega \to \mathcal{X}$. This follows from the fact that for any $t \in T$ and $x_t \in \mathbb{R}$, we can take Borel measurable sets $A(x) = \times (-\infty, x_t] \times_{s \neq t} \mathbb{R}$. Then, $X^{-1}(A(x)) = X_t^{-1}(-\infty, x_t] \in \mathcal{F}$.

Remark 2. The random process X can be thought of as a collection of random variables $X : T \to \mathcal{X}^{\Omega}$ or an ensemble of sample paths $X : \Omega \to \mathcal{X}^T$. Recall that \mathcal{X}^T is set of all functions from the index set T to state space \mathcal{X} .

1.3 Distribution

To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of random variables with a joint measure. We are interested in identifying the joint distribution $F : \mathbb{R}^T \to [0, 1]$. To this end, for any $x \in \mathbb{R}^T$ we need to know

$$F_X(x) \triangleq P\left(\bigcap_{t \in T} \{\omega \in \Omega : X_t(\omega) \leq x_t\}\right) = P(\bigcap_{t \in T} X_t^{-1}(-\infty, x_t]) = P \circ X^{-1} \underset{t \in T}{\times} (-\infty, x_t].$$

However, even for a simple independent process with countably infinite *T*, any function of the above form would be zero if x_t is finite for all $t \in T$. Therefore, we only look at the values of F(x) when $x_t \in \mathbb{R}$ for indices *t* in a finite set *S* and $x_t = \infty$ for all $t \notin S$. That is, for any finite set $S \subseteq T$, we focus on the product sets of the form

$$A(x) \triangleq \bigotimes_{s \in S} (-\infty, x_s] \bigotimes_{s \notin S} \mathbb{R},$$

where $x \in \mathfrak{X}^T$ and $x_t = \infty$ for $t \notin S$. Recall that by definition of measurability, $X^{-1}(A(x)) \in \mathfrak{F}$, and hence $P \circ X^{-1}(A(x))$ is well defined.

Definition 1.2. We can define a **finite dimensional distribution** for any finite set $S \subseteq T$ and $x_S = \{x_s \in \mathbb{R} : s \in S\}$,

$$F_{X_{S}}(x_{S}) \triangleq P\left(\bigcap_{s \in S} \{\omega \in \Omega : X_{s}(\omega) \leq x_{s}\}\right) = P(\bigcap_{s \in S} X_{s}^{-1}(-\infty, x_{s}]).$$

Set of all finite dimensional distributions of the stochastic process $X = (X_t \in \mathcal{X}^{\Omega} : t \in T)$ characterizes its distribution completely. Simpler characterizations of a stochastic process *X* are in terms of its moments. That is, the first moment such as mean, and the second moment such as correlations and covariance functions.

$$m_X(t) \triangleq \mathbb{E}X_t, \qquad R_X(t,s) \triangleq \mathbb{E}X_tX_s, \qquad C_X(t,s) \triangleq \mathbb{E}(X_t - m_X(t))(X_s - m_X(s)).$$

Example 1.3 (Bernoulli sequence). Let index set $T = \mathbb{N} = \{1, 2, ...\}$ and the sample space be the collection of infinite bi-variate sequences of successes (S) and failures (F) defined by $\Omega = \{S, F\}^{\mathbb{N}}$. An outcome $\omega \in \Omega$ is an infinite sequence $\omega = (\omega_1, \omega_2, ...)$ such that $\omega_n \in \{S, F\}$ for each $n \in \mathbb{N}$. We let the event space $\mathcal{F} = \sigma(E_n : n \in \mathbb{N})$ where E_n is the event of first appearance of success at the *n*th outcome.

We define the random process $X : \Omega \to \{0,1\}^{\mathbb{N}}$ such that $X(\omega) = (\mathbb{1}_{\{S\}}(\omega_1), \mathbb{1}_{\{S\}}(\omega_2), ...)$. That is, we have

$$X_n(\boldsymbol{\omega}) = \mathbb{1}_{\{S\}}(\boldsymbol{\omega}_n), \qquad \qquad X(\boldsymbol{\omega}) = (\mathbb{1}_{\{S\}}(\boldsymbol{\omega}_n) : n \in \mathbb{N}).$$

Hence, we can write the process as collection of random variables $X = (X_n \in \{0, 1\}^{\Omega} : n \in \mathbb{N})$ or the collection of sample paths $X = (X(\omega) \in \{0, 1\}^{\mathbb{N}} : \omega \in \Omega)$.

1.4 Independence

A stochastic process X is said to be **independent** if for all finite subsets $S \subseteq T$, the finite collection of events $\{\{X_s \leq x_s\} : s \in S\}$ are independent. That is, we have

$$F_{X_S}(x_S) = P(\cap_{s \in S} \{X_s \leqslant x_s\}) = \prod_{s \in S} P\{X_s \leqslant x_s\} = \prod_{s \in S} F_{X_s}(x_s).$$

Two stochastic process X, Y for the common index set T are **independent random processes** if for all finite subsets $I, J \subseteq T$, the following events $\{X_i \leq x_i, i \in I\}$ and $\{Y_j \leq y_j, j \in J\}$ are independent. That is,

$$F_{X_{I},Y_{J}}(x_{I},y_{J}) \triangleq P\left(\left\{X_{i} \leqslant x_{i}, i \in I\right\} \cap \left\{Y_{j} \leqslant y_{j}, j \in J\right\}\right) = P\left(\cap_{i \in I} \left\{X_{i} \leqslant x_{i}\right\}\right) P\left(\cap_{j \in J} \left\{Y_{j} \leqslant y_{j}\right\}\right) = F_{X_{I}}(x_{I})F_{Y_{J}}(y_{J}).$$

Example 1.4 (Bernoulli sequence). Let the Bernoulli sequence *X* defined in Example 1.3 be independent and identically distributed with $P\{X_n = 1\} = p \in (0, 1)$. For any sequence $x \in \{0, 1\}^{\mathbb{N}}$, we have $P\{X = x\} = 0$. Let $q \triangleq (1 - p)$, then the probability of observing *m* heads and *r* tails is given by $p^m q^r$. We can easily compute the mean, the auto-correlation, and the auto-covariance functions for the independent Bernoulli process defined in Example 1.4 as

$$m_X(n) = \mathbb{E}X_n = p,$$
 $R_X(m,n) = \mathbb{E}X_m X_n = \mathbb{E}X_m \mathbb{E}X_n = p^2,$ $C_X(m,n) = 0.$

1.5 Filtration

Definition 1.5. A net of σ -algebras $\mathcal{F}_{\bullet} = \{\mathcal{F}_t \subseteq \mathcal{F} : t \in T\}$ is called a **filtration** when the index set *T* is totally ordered and the net is non-decreasing, that is for all $s \leq t$ we have $\mathcal{F}_s \subseteq \mathcal{F}_t$.

Definition 1.6. Consider a real-valued random process *X* indexed by the ordered set *T* on the probability space (Ω, \mathcal{F}, P) . The process *X* is called **adapted** to the filtration \mathcal{F}_{\bullet} , if for each $t \in T$, we have $\sigma(X_t) \subseteq \mathcal{F}_t$ or $X_t^{-1}(-\infty, x] \in \mathcal{F}_t$ for each $x \in \mathbb{R}$.

Definition 1.7. We can define a natural filtration $\mathcal{F}_{\bullet} = \{\mathcal{F}_t \subseteq \mathcal{F} : t \in T\}$ indexed by totally ordered *T* for the random process $X = (X_s : s \in T)$, where $\mathcal{F}_t \triangleq \sigma(X_s, s \leq t)$ is the information about the process until index *t* and the process *X* is adapted to its natural filtration by definition.

Remark 3. If $X = (X_t : t \in T)$ is an independent process with the associated natural filtration \mathcal{F}_{\bullet} , then for any t > s and events $A \in \mathcal{F}_s$, the random variable X_t is independent of the event A. This is just a fancy way of saying X_t is independent of $(X_u, u \leq s)$. Hence, for any random variable $Y \in \mathcal{F}_s$, we have

 $\mathbb{E}[\mathbb{E}[X_tY|\mathcal{F}_s]] = \mathbb{E}[\mathbb{E}[X_t]Y] = \mathbb{E}X_t\mathbb{E}Y.$