
Lecture-03: Stochastic Processess

1 Stochastic Processes
Definition 1.1 (Random process). Let (Ω,F,P) be a probability space. For an arbitrary index set T and state
space X ⊆ R, a random process is a measurable map X : Ω→ XT . That is, for each outcome ω ∈ Ω, we have a
function X(ω) : T 7→ X called the sample path or the sample function of the process X , also written as

X(ω), (Xt(ω) ∈ X : t ∈ T ).

1.1 Classification
State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If the
index set T is countable, the stochastic process is called discrete-time stochastic process or random sequence.
When the index set T is uncountable, it is called continuous-time stochastic process. The index set T doesn’t
have to be time, if the index set is space, and then the stochastic process is spatial process. When T =Rn× [0,∞),
stochastic process X is a spatio-temporal process.

1.2 Measurability
For any finite subset S⊆ T and real vector x ∈ RT such that xt = ∞ for any t /∈ S, we define a set

A(x),
{

y ∈ RT : yt 6 xt
}
=×

t∈T
(−∞,xt ] =×

s∈S

(−∞,xs]×
t /∈S

R.

Then, the measurability of the random process X implies that for any such set A(x), we have

X−1(A(x)) = X−1×
t∈T

(−∞,xt ] = ∩t∈T X−1
t (−∞,xt ] = ∩s∈SX−1

s (−∞,xs] ∈ F.

Remark 1. Realization of random process at each t ∈ T , is a random variable defined on the probability space
(Ω,F,P) such that Xt : Ω→ X. This follows from the fact that for any t ∈ T and xt ∈ R, we can take Borel
measurable sets A(x) =×(−∞,xt ]×s 6=t R. Then, X−1(A(x)) = X−1

t (−∞,xt ] ∈ F.

Remark 2. The random process X can be thought of as a collection of random variables X : T→XΩ or an ensemble
of sample paths X : Ω→ XT . Recall that XT is set of all functions from the index set T to state space X.

1.3 Distribution
To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of
random variables with a joint measure. We are interested in identifying the joint distribution F : RT → [0,1]. To
this end, for any x ∈ RT we need to know

FX (x), P

(⋂
t∈T

{ω ∈Ω : Xt(ω)6 xt}

)
= P(

⋂
t∈T

X−1
t (−∞,xt ]) = P◦X−1×

t∈T
(−∞,xt ].

However, even for a simple independent process with countably infinite T , any function of the above form would
be zero if xt is finite for all t ∈ T . Therefore, we only look at the values of F(x) when xt ∈ R for indices t in a
finite set S and xt = ∞ for all t /∈ S. That is, for any finite set S⊆ T , we focus on the product sets of the form

A(x),×
s∈S

(−∞,xs]×
s/∈S

R,

where x ∈ XT and xt = ∞ for t /∈ S. Recall that by definition of measurability, X−1(A(x)) ∈ F, and hence P ◦
X−1(A(x)) is well defined.
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Definition 1.2. We can define a finite dimensional distribution for any finite set S⊆ T and xS = {xs ∈R : s∈ S},

FXS(xS), P

(⋂
s∈S

{ω ∈Ω : Xs(ω)6 xs}

)
= P(

⋂
s∈S

X−1
s (−∞,xs]).

Set of all finite dimensional distributions of the stochastic process X = (Xt ∈ XΩ : t ∈ T ) characterizes its
distribution completely. Simpler characterizations of a stochastic process X are in terms of its moments. That is,
the first moment such as mean, and the second moment such as correlations and covariance functions.

mX (t), EXt , RX (t,s), EXtXs, CX (t,s), E(Xt −mX (t))(Xs−mX (s)).

Example 1.3 (Bernoulli sequence). Let index set T =N= {1,2, . . .} and the sample space be the collection
of infinite bi-variate sequences of successes (S) and failures (F) defined by Ω = {S,F}N. An outcome ω ∈Ω

is an infinite sequence ω = (ω1,ω2, . . .) such that ωn ∈ {S,F} for each n ∈ N. We let the event space
F = σ(En : n ∈ N) where En is the event of first appearance of success at the nth outcome.

We define the random process X : Ω→ {0,1}N such that X(ω) = (1{S}(ω1),1{S}(ω2), . . .). That is, we
have

Xn(ω) = 1{S}(ωn), X(ω) = (1{S}(ωn) : n ∈ N).

Hence, we can write the process as collection of random variables X = (Xn ∈ {0,1}Ω : n∈N) or the collection
of sample paths X = (X(ω) ∈ {0,1}N : ω ∈Ω).

1.4 Independence
A stochastic process X is said to be independent if for all finite subsets S ⊆ T , the finite collection of events
{{Xs 6 xs} : s ∈ S} are independent. That is, we have

FXS(xS) = P(∩s∈S {Xs 6 xs}) = ∏
s∈S

P{Xs 6 xs}= ∏
s∈S

FXs(xs).

Two stochastic process X ,Y for the common index set T are independent random processes if for all finite
subsets I,J ⊆ T , the following events {Xi 6 xi, i ∈ I} and

{
Yj 6 y j, j ∈ J

}
are independent. That is,

FXI ,YJ (xI ,yJ), P
(
{Xi 6 xi, i ∈ I}∩

{
Yj 6 y j, j ∈ J

})
= P(∩i∈I {Xi 6 xi})P

(
∩ j∈J

{
Yj 6 y j

})
= FXI (xI)FYJ (yJ).

Example 1.4 (Bernoulli sequence). Let the Bernoulli sequence X defined in Example 1.3 be independent and
identically distributed with P{Xn = 1} = p ∈ (0,1). For any sequence x ∈ {0,1}N, we have P{X = x} = 0.
Let q , (1− p), then the probability of observing m heads and r tails is given by pmqr. We can easily
compute the mean, the auto-correlation, and the auto-covariance functions for the independent Bernoulli
process defined in Example 1.4 as

mX (n) = EXn = p, RX (m,n) = EXmXn = EXmEXn = p2, Cx(m,n) = 0.

1.5 Filtration
Definition 1.5. A net of σ -algebras F• = {Ft ⊆ F : t ∈ T} is called a filtration when the index set T is totally
ordered and the net is non-decreasing, that is for all s 6 t we have Fs ⊆ Ft .

Definition 1.6. Consider a real-valued random process X indexed by the ordered set T on the probability space
(Ω,F,P). The process X is called adapted to the filtration F•, if for each t ∈ T , we have σ(Xt) ⊆ Ft or
X−1

t (−∞,x] ∈ Ft for each x ∈ R.

Definition 1.7. We can define a natural filtration F• = {Ft ⊆ F : t ∈ T} indexed by totally ordered T for the
random process X = (Xs : s ∈ T ), where Ft , σ(Xs,s 6 t) is the information about the process until index t and
the process X is adapted to its natural filtration by definition.
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Remark 3. If X = (Xt : t ∈ T ) is an independent process with the associated natural filtration F•, then for any t > s
and events A ∈ Fs, the random variable Xt is independent of the event A. This is just a fancy way of saying Xt is
independent of (Xu,u 6 s). Hence, for any random variable Y ∈ Fs, we have

E[E[XtY |Fs]] = E[E[Xt ]Y ] = EXtEY.
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