
Lecture-04: Stopping Times

1 Stopping Times
Let (Ω,F,P) be a probability space, and F• = (Ft ⊆ F : t ∈ T ) be a filtration on this probability space for an
ordered index set T ⊆ R.

Definition 1.1. An almost surely finite random variable τ : Ω→ T defined on this probability space is called a
stopping time with respect to this filtration if the event

{τ 6 t} ∈ Ft for all t ∈ T.

Remark 1. We can consider the ordered index set T as time. For a real-valued time-evolving random process
X : Ω→ XT defined on this space, let F• be its natural filtration, i.e. Ft = σ(Xs,s 6 t) for all times t ∈ T . A
stopping time τ : Ω→ T for the process X is a random variable such that if we observe the process X sequentially,
then the event {τ 6 t} can be completely determined by the sequential observation (Xs,s 6 t) until time t.

Remark 2. For the special case when I =N is a countable ordered index set, the stopping time can be defined as a
random variable N : Ω→ N∪{∞} taking countably many values, if P({N ∈ N}) = 1 and the event {N = n} ∈ Fn
for each n ∈ N. This follows from the fact that {N = n} = {N 6 n}∩{N 6 n−1}c ∈ Fn and ∪m6n {N = m} =
{N 6 n}.

Example 1.2. Examples of stopping times.

1. While traveling on the bus, consider the random process as the bus stops. The random variable mea-
suring “time until bus crosses next stop after Majestic” is a stopping time as it’s value is determined by
events before it happens. On the other hand “time until bus crosses the stop before Majestic” would not
be a stopping time in the same context. This is because we have to cross this stop, reach Majestic and
then realize we have crossed that point.

2. Consider an iid Bernoulli sequence X : Ω→ {0,1}N, and define the number of successes until time n
as Sn , ∑

n
i=1 Xi. The following are stopping times,

Tk , min{n ∈ N : Sn = k} , for all k ∈ N.

We will show that Tk is almost surely finite. We can verify that {Tk = n}= ∩n−1
i=1 {Si < k}∩{Sn = k} ∈

Fn for each n ∈ N.

1.1 Properties of stopping time
Lemma 1.3. Let τ1,τ2 : Ω→ T be stopping times on probability space (Ω,F,P) with respect to filtration F• =
(Ft , t ∈ T ). Then the following hold true.

i min{τ1,τ2} and maxτ1,τ2 are stopping times.

ii If P({τ ∈ I}) = 1 for a countable I ⊆ T , then τ1 + τ2 is a stopping time.

Proof. Let F• = (Ft : t ∈ T ) be a filtration, and τ1,τ2 associated stopping times.

i Result follows since the event {min{τ1,τ2}> t}= {τ1 > t}∩{τ2 > t}∈Ft , and the event {max{τ1,τ2}6 t}=
{τ1 6 t}∩{τ2 6 t} ∈ Ft for any time t ∈ T .

ii It suffices to show that the event {τ1 + τ2 6 t} ∈ Ft for t ∈ I = N. To this end, we observe that

{τ1 + τ2 6 n}=
⋃

m∈N
{τ1 6 n−m,τ2 6 m} ∈ Fn.
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Lemma 1.4 (Wald’s lemma). Consider a random walk S : Ω→ RN with iid step-sizes X : Ω→ RN having finite
E |X1|, Let N : Ω→ N be a finite mean stopping time adapted to the natural filtration F• = (Fn , σ(X1, . . . ,Xn) :
n ∈ N) Then,

ESN = EX1EN.

Remark 3. Recall that when N is independent of the random sequence X , the similar result holds. The proof is
really simple, as we can write

ESN =E[E[SN |N]] =E[E[SN1Ω|N]] =E[∑
n∈N

E[SN1{N=n}|N]] =E[∑
n∈N

1{N=n}E[SN |N = n]] = ∑
n∈N

E1{N=n}

n

∑
i=1

E[Xi|N = n].

Since the random sequence X and random variable N are independent, we have E[Xi|N = n] = EXi. Since the
sequence X is also identical, we get

ESN = EX1 ∑
n∈N

nP{N = n}= EX1EN.

Remark 4. Let’s examine why this proof breaks down when N is a stopping time with respect to natural filtration
of X . In this case, it is not clear what is the value E[Xi|N = n]? For example, consider the iid sequence X ∈ {0,1}N
with P(Xi = 1) = p and stopping N , inf{n ∈ N : Xi = 1} adapted to natural filtration of X . In this case,

E[Xi|N = n] = 1{i=n} 6= EXi = p.

However, we do notice that the result somehow magically continues to hold, as

ESN = ∑
n∈N

E1{N=n} = 1 = EX1EN =
p
p
.

Proof. From the independence of step sizes, it follows that Xn is independent of Fn−1. Next we observe that
{N > n}= {N > n−1} ∈ Fn−1, and hence E[Xn1{N>n}] = EXnE1{N>n}. Therefore,

E
N

∑
n=1

Xn = E ∑
n∈N

Xn1{N>n} = ∑
n∈N

EXnE
[
1{N>n}

]
= EX1E

[
∑

n∈N
1{N>n}

]
= E[X1]E[N]. (1)

We exchanged limit and expectation in the above step, which is not always allowed. We were able to do it since
the summand is positive and we apply monotone convergence theorem.

1.2 Stopping time σ -algebra
We wish to define an event space consisting information of the process until a random time τ . For a stopping time
τ : Ω→ T , what we want is something like σ(Xs : s 6 τ). But that doesn’t make sense, since the random time τ

is a random variable itself. When τ is a stopping time, the event {τ 6 t} ∈ Ft . What makes sense is the set of all
events whose intersection with {τ 6 t} belongs to the event subspace Ft for all t > 0.

Definition 1.5. For a stopping time τ : Ω→ T adapted to the filtration F•, the stopping time σ -algebra is defined

Fτ , {A ∈ F : A∩{τ 6 t} ∈ Ft , for all t ∈ T} .

We will first show that Fτ is indeed a σ -algebra.

1. Since τ is a stopping time, it follows that Ω ∈ Fτ . Further, since /0 ∈ Ft , we have /0 ∈ Fτ .

2. From closure of Ft under countable unions, it follows that Fτ is closed under countable unions.

3. Let A ∈ Fτ , then A∩{τ 6 t} ∈ Ft and we can write Ac∩{τ 6 t}= {τ 6 t}\ (A∩{τ 6 t}) ∈ Ft .

Informally, the event space Fτ has information up to the random time τ . That is, it is a collection of measurable
sets that are determined by the process until time τ . Any measurable set A ∈ F can be written as A = (A∩{τ 6
t})∪ (A∩{τ > t}). All such sets A such that A∩{τ 6 t} ∈ Ft is a member of the stopped σ -algebra.

Lemma 1.6. Let τ,τ1,τ2 be stopping times, and X : Ω→ XT a random process, all adapted to a filtration F• =
(Ft , t ∈ T ). Then, the following are true.

i If τ1 6 τ2 almost surely, then Fτ1 ⊆ Fτ2 .
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ii σ(τ)⊆ Fτ , and σ(Xτ)⊆ Fτ .

Proof. Recall, that for any t > 0, we have {τ 6 t} ∈ Ft .

i From the hypothesis τ1 6 τ2 a.s., we get {τ2 6 t}⊆{τ1 6 t} a.s., where both events belong to Ft since they are
stopping times. The result follows since for any A∈Fτ1 , we can write A∩{τ2 6 t}=A∩{τ1 6 t}∩{τ2 6 t}∈
Ft for all t ∈ T .

ii Any event A ∈ σ(τ) is generated by inverse images {τ 6 s} for s ∈ R. Indeed {τ 6 s} ∈ Fτ since {τ 6 s}∩
{τ 6 t}= {τ 6 s∧ t} ∈ Ft , for all t ∈ T .

The events of the form {Xτ 6 x} for real x ∈ R generate the event subspace σ(Xτ), and event {Xτ 6 x}∩
{τ 6 t} ∈ Ft for all t ∈ T . This implies that σ(Xτ)⊆ Fτ .

Lemma 1.7. Let F• be the natural filtration associated with the process X : Ω→ XT , and τ be an associated
stopping time. Let H , σ(Xτ∧t , t ∈ T ) be the event space generated by the stopped process (Xτ∧t : t ∈ T ) and Fτ

be the stopping-time event space. Then Fτ =H for T discrete.

Proof. Let A ∈H, then we have A∩{τ 6 t} ∈ Ft for any t ∈ T , and hence H ⊆ Fτ . For the converse, we assume
T = N and we need to show that for any A ∈ Fτ we have A∩{τ = k} ∈H for all k ∈ N. We will show this by
induction on k ∈ N.

k = 1: We take any A ∈ Fτ , then A∩{τ = 1} ∈ F1 ⊆H since τ > 1 almost surely.

k > 1: We assume that the induction hypothesis holds for some k−1 ∈ N. For any A ∈ Fτ , we have A∩{τ = k} ∈
Fk = σ(X1, . . . ,Xk). Further, {τ = k}= {τ = k}∩{τ 6 k}, and therefore, we can write

1A∩{τ=k} = f (X1, . . . ,Xk)1{τ>k} = f (Xτ∧1, . . . ,Xτ∧k)(1−1{τ6k−1}) ∈H.

This implies that A∩{τ = k} ∈H, and hence Fτ ⊆H.
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