Lecture-05: Strong Markov Property

1 Strong Markov property

Definition 1.1. A process $X : \Omega \to \mathfrak{X}^{\mathbb{R}}$ defined on a probability space (Ω, \mathcal{F}, P) adapted to its natural filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t \triangleq \sigma(X_s, s \leq t), t \in T)$, is called **Markov** if we have

$$P(\{X_t \leq x\} | \mathcal{F}_s) = P(\{X_t \leq x\} | \sigma(X_s)).$$

Example 1.2. An *iid* process is trivially Markov, since

$$P(\{X_t \leq x\} | \mathcal{F}_s) = P(\{X_t \leq x\} | \sigma(X_s)) = P(\{X_t \leq x\}).$$

Example 1.3. Let $X : \Omega \to \mathcal{X}^{\mathbb{N}}$ be an <u>iid</u> process, and a random walk process $S : \Omega \to \mathcal{X}^{\mathbb{N}}$ is defined in term of step-size process X as $S_n \triangleq \sum_{i=1}^n X_i$ for all $n \in \mathbb{N}$. Then the random walk S is Markov with respect to its natural filtration \mathcal{F}_{\bullet} . To see this, take $n \in \mathbb{N}$ and observe from the independence of X_{n+1} and \mathcal{F}_n that

$$P(\{S_{n+1} \le x\} | \mathcal{F}_n) = P(\{X_{n+1} \le x - S_n\}) = P(\{X_{n+1} \le x - S_n\} | \sigma(S_n)) = P(\{S_{n+1} \le x\} | \sigma(S_n)).$$

Definition 1.4. Let $X : \Omega \to \mathcal{X}^T$ be a real valued Markov process adapted to a filtration \mathcal{F}_{\bullet} . Let τ be an almost surely finite stopping time with respect to this filtration, then the process *X* is called **strongly Markov** if for all $x \in \mathbb{R}$ and t > 0, we have

$$P(\{X_{t+\tau} \leq x\} | \mathcal{F}_{\tau}) = P(\{X_{t+\tau} \leq x\} | \sigma(X_{\tau})).$$

Lemma 1.5. Let $X : \Omega \to X^T$ be any Markov process adapted to a filtration \mathcal{F}_{\bullet} . For any almost surely finite stopping time τ with respect to this filtration that takes only countably many values $I \subseteq T$, Markov process X is strongly Markov at this stopping time τ .

Proof. Let $I \subseteq T$ be the countable set such that $P\{\tau \notin I\} = 0$. Fix $x \in \mathbb{R}$, then we will show that $\mathbb{E}[\mathbb{1}_{\{X_{\tau+i} \leq x\}} | \mathcal{F}_{\tau}] = \mathbb{E}[\mathbb{1}_{\{X_{\tau+i} \leq x\}} | \sigma(X_{\tau})]$ for all i > 0. Since $\mathbb{E}[\mathbb{1}_{\{X_{\tau+i} \leq x\}} | \sigma(X_{\tau})] \in \mathcal{F}_{\tau}$, it suffices to show that

$$\mathbb{E}[\mathbb{1}_A \mathbb{E}[\mathbb{1}_{\{X_{\tau+i} \leqslant x\}} | \sigma(X_{\tau})]] = \mathbb{E}[\mathbb{1}_A \mathbb{1}_{\{X_{\tau+i} \leqslant x\}}], \text{ for all } A \in \mathcal{F}_{\tau}.$$

Let $A \in \mathcal{F}_{\tau}$, then $A \cap \{\tau = i\} \in \mathcal{F}_i$ for all $i \in I$. Then, from almost sure finiteness of τ , we can write $A = \bigcup_{i \in I} A \cap \{\tau = i\}$. From the tower property of conditional expectation and \mathcal{F}_i -measurability of $A \cap \{\tau = i\}$, we have

$$\mathbb{E}[\mathbbm{1}_{A}\mathbbm{1}_{\{X_{t+\tau}\leqslant x\}}] = \sum_{i\in I} \mathbb{E}[\mathbbm{1}_{A\cap\{X_{t+\tau}\leqslant x\}\cap\{\tau=i\}}] = \sum_{i\in I} \mathbb{E}[\mathbbm{1}_{A\cap\{X_{t+i}\leqslant x\}\cap\{\tau=i\}}|\mathcal{F}_i]] = \sum_{i\in I} \mathbb{E}[\mathbbm{1}_{A\cap\{\tau=i\}}\mathbbm{1}_{\{\{X_{t+i}\leqslant x\}\}}|\mathcal{F}_i]].$$

From Markov property of process X, we have $\mathbb{E}[\mathbb{1}_{\{X_{t+i} \leq x\}} | \mathcal{F}_i] = \mathbb{E}[\mathbb{1}_{\{X_{t+i} \leq x\}} | \sigma(X_i)]$. Further, $\mathbb{1}_{A \cap \{\tau=i\}} = \mathbb{1}_A \mathbb{1}_{\{\tau=i\}}$, and therefore

$$\mathbb{E}[\mathbbm{1}_A\mathbbm{1}_{\{X_{t+\tau}\leqslant x\}}] = \mathbb{E}[\mathbbm{1}_A\sum_{i\in I}\mathbbm{1}_{\{\tau=i\}}\mathbb{E}[\mathbbm{1}_{\{X_{t+i}\leqslant x\}}|\boldsymbol{\sigma}(X_i)]] = \mathbb{E}[\mathbbm{1}_A\mathbb{E}[\mathbbm{1}_{\{X_{t+\tau}\leqslant x\}}|\boldsymbol{\sigma}(X_{\tau})]].$$

Corollary 1.6. Any Markov process on countable index set T is strongly Markov.

Proof. For a countable index set T, all associated stopping times assume at most countably many values.

Corollary 1.7. Let τ be an almost surely finite stopping time with respect to the natural filtration \mathfrak{F}_{\bullet} of an iid random sequence X. Then $(X_{\tau+1}, \ldots, X_{\tau+n})$ is independent of \mathfrak{F}_{τ} for each $n \in \mathbb{N}$ and identically distributed to (X_1, \ldots, X_n) .

Theorem 1.8. Let $X : \Omega \to X^T$ be any real-valued Markov process adapted to the filtration \mathcal{F}_{\bullet} , with rightcontinuous sample paths. If the map $t \mapsto \mathbb{E}[f(X_s)|\sigma(X_t)]$ is right-continuous for each bounded continuous function f, then X is strongly Markov.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function, $t \ge 0$, and τ be an \mathcal{F}_{\bullet} -adapted stopping time. It suffices to show that $f(X_t)$ satisfies the strong Markov property. For each $m \in \mathbb{N}$, consider the intervals $I_{k,m} \triangleq ((k-1)2^{-m}, k2^{-m}]$ for all $k \in [2^{2m}]$, and define

$$\tau_m \triangleq \sum_{k=1}^{2^{2m}} k 2^{-m} \mathbb{1}_{\{\tau \in I_{k,m}\}}.$$

Clearly the stopping time $\tau_m \leq 2^m$ a.s. and takes countable values for each *m*. Further, τ_m is decreasing in *m*. From a.s. finiteness of stopping time τ , there exists an $m_0 \in \mathbb{N}$ such that $\tau_m \downarrow \tau$ for all outcomes $\omega \in \Omega$ for $m \ge m_0$. In addition, $\tau \le \tau_m$ and hence $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau_m}$ for all $m \ge m_0$. From strong Markov property for countably valued stopping times, we have for each $A \in \mathcal{F}_{\tau}$, we have

$$\mathbb{E}[\mathbb{1}_A f(X_{\tau_m+t})] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[f(X_{\tau_m+t}) | \sigma(X_{\tau_m})].$$

Applying dominated convergence theorem, taking limit as $\tau_m \downarrow \tau$ on both sides, we have

$$\mathbb{E}[\mathbb{1}_A f(X_{\tau+t})] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[f(X_{\tau+t}) | \boldsymbol{\sigma}(X_{\tau})]].$$