Lecture-06: Renewal Process

1 Counting processes

Definition 1.1. A stochastic process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ is a **counting process** if

$$i_{-} N(0) = 0$$
, and

ii_ for each $\omega \in \Omega$, the map $t \mapsto N(t)$ is non-decreasing, integer valued, and right continuous.

Lemma 1.2. A counting process has finitely many jumps in a finite interval (0,t].

Definition 1.3. A simple counting process has discontinuities of unit size.

Definition 1.4. The *n*th point of discontinuity of a simple counting process N(t) is called the *n*th arrival instant and denoted by $S_n : \Omega \to \mathbb{R}_+$ such that

$$S_0 \triangleq 0,$$
 $S_n \triangleq \inf\{t \ge 0 : N(t) \ge n\}, n \in \mathbb{N}.$

The random sequence of arrival instants is denoted by $S : \Omega \to \mathbb{R}^{\mathbb{N}}_+$. The **inter arrival time** between (n-1)th and *n*th arrival is denoted by $X_n \triangleq S_n - S_{n-1}$.

Remark 1. The arrival sequence *S* is non-decreasing for each outcome $\omega \in \Omega$. That is, $S_n \leq S_{n+1}$ for all $n \in \mathbb{N}$. *Remark* 2. Let $\mathcal{F}_{\bullet} = (\mathcal{F}_s : s \ge 0)$ be the natural filtration associated with the counting process *N*, that is $\mathcal{F}_t = \sigma(N(t), t \ge 0)$. Then $S : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ is a sequence of stopping times with respect to \mathcal{F}_{\bullet} .

Figure 1: Sample path of a simple counting process.

Lemma 1.5 (Inverse processes). Inverse of a simple counting process N is its corresponding arrival process S. That is,

$$\{S_n \leqslant t\} = \{N(t) \ge n\}. \tag{1}$$

Proof. Let $\omega \in \{S_n \leq t\}$. Since *N* is a non-decreasing process, we have $N(t) \geq N(S_n) = n$. Conversely, let $\omega \in \{N(t) \geq n\}$, then it follows from definition that $S_n \leq t$.

Corollary 1.6. The probability mass function for the counting process N(t) at time t can be written in terms of distribution functions of arrival sequence S as

$$P\{N(t) = n\} = F_{S_n}(t) - F_{S_{n+1}}(t).$$

Proof. The event $\{N(t) \ge n\}$ equal union of two disjoint events $\{N(t) = n\} \cup \{N(t) \ge n+1\}$, and the result follows from the probability of disjoint unions.

Definition 1.7. A point process is a collection $S : \Omega \to \mathcal{X}^{\mathbb{N}}$ of randomly distributed points, such that $\lim_{n\to\infty} |S_n| = \infty$. A point process is simple if the points are distinct. Let $N(\emptyset) = 0$ and denote the number of points in a measurable set $A \in \mathcal{B}(\mathcal{X})$ by

$$N(A) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \in A\}}.$$

Then $N: \Omega \to \mathbb{Z}^{\mathcal{B}(\mathcal{X})}_+$ is called a **counting process** for the simple point process *S*.

Remark 3. When $\mathfrak{X} = \mathbb{R}_+$, one can order these points of *S* as an increasing sequence such that $S_1 < S_2 < \ldots$, and denote number of points in half-open interval by

$$N(t) \triangleq N(0,t] = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{0,t\}}(S_n) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \leq t\}}.$$

Remark 4. For a simple point process, we have $P({X_n = 0}) = P({X_n \leq 0}) = 0$.

Remark 5. General point processes in higher dimension don't have any inter-arrival time interpretation.

2 Renewal processes

We will consider **inter-arrival times** $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ to be a sequence of non-negative *iid* random variables with a common distribution *F*, such that F(0) < 1 and mean $\mu = \mathbb{E}X_1 = \int_{\mathbb{R}} x dF(x)$ is finite. We interpret X_n as the time between $(n-1)^{\text{st}}$ and the n^{th} renewal event.

Definition 2.1 (Renewal Instants). Let S_n denote the time of nth renewal instant and assume $S_0 = 0$. Then, we have

$$S_n \triangleq \sum_{i=1}^n X_i, \quad n \in \mathbb{N}.$$

The random sequence $S: \Omega \to \mathbb{R}^{\mathbb{N}}_{+}$ is called sequence of renewal instants or renewal sequence.

Remark 6. The condition F(0 < 1 on inter-arrival times implies non-degenerate renewal process. If F(0) is equal to 1 then it is a trivial process.

Definition 2.2 (Renewal process). The associated counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ that counts number of renewal until time *t* with *iid* general inter-renewal times is called a **renewal process**, written as

$$N(t) \triangleq \sup\{n \in \mathbb{Z}_+ : S_n \leqslant t\} = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \leqslant t\}}.$$

Definition 2.3. A renewal process *S* is said to be **recurrent** if the inter-renewal time X_n is finite almost surely for every $n \in \mathbb{N}$, the process is called **transient** otherwise.

Definition 2.4. The process is said to be **periodic** with period *d* if the inter-renewal times $X : \Omega \to X^{\mathbb{N}}$ take values in a discrete set $\mathcal{X} \subseteq \{nd : n \in \mathbb{Z}_+\}$ and $d = \operatorname{gcd}(\mathcal{X})$ is the largest such number. Otherwise, if there is no such d > 0, then the process is said to be **aperiodic**. If the inter-arrival times is a periodic random variable, then the associated distribution function *F* is called **lattice**.

Example 2.5 (Random walk). Random walk S on \mathbb{R}^d with *iid* non-negative step-sizes $(X_n : n \in \mathbb{N})$ is a renewal process.

Example 2.6 (Markov chain). Let $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$ be a discrete time homogeneous Markov chain X with state space \mathcal{X} . For $X_0 = i \in \mathcal{X}, \tau_i^+(0) = 0$, let the recurrent times be defined inductively as

$$\tau_i(n)^+ = \inf\left\{k > \tau_i^+(n-1) : X_k = i\right\}.$$
(2)

It follows from the strong Markov property of the process X, that $\tau_i^+ : \Omega \to \mathbb{R}_+^{\mathbb{Z}_+}$ is a renewal sequence.

3 Delayed renewal process

Many times in practice, we have a *delayed start* to a renewal process. That is, the arrival process has independent inter-arrival times $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$, where the common distribution for X_n is F when $n \ge 2$, and the distribution of first inter-arrival time X_1 is G. Let the first renewal instant be $S_0 = 0$ and nth arrival instant be $S_n \triangleq \sum_{i=1}^n X_i$ for all $n \in \mathbb{N}$.

The associated counting process is called a **delayed renewal process** and denoted by $N_D : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$. The following inverse relationship continues to hold between counting and arrival process,

$$N_D(t) = \sup\left\{n \in \mathbb{N} : S_n \leqslant t\right\}.$$
(3)

Example 3.1 (Markov chain). Let $X : \Omega \to X^{\mathbb{Z}_+}$ be a discrete time homogeneous Markov chain X with state space V. For $X_0 = x \in X$ and for $y \neq x$ let $\tau_y^+(0) = 0$, let the recurrent times be defined inductively as

$$\tau_{\mathbf{v}}(k)^+ \triangleq \inf \left\{ n > \tau_{\mathbf{v}}^+(k-1) : X_n = y \right\}.$$

It follows from the strong Markov property of the process X, that $\tau_j^+: \Omega \to \mathbb{N}^{\mathbb{Z}_+}$ is a delayed renewal sequence.