Lecture-06: Renewal Process

1 Counting processes

Definition 1.1. A stochastic process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is a counting process if
i- $N(0)=0$, and
ii_ for each $\omega \in \Omega$, the map $t \mapsto N(t)$ is non-decreasing, integer valued, and right continuous.
Lemma 1.2. A counting process has finitely many jumps in a finite interval $(0, t]$.
Definition 1.3. A simple counting process has discontinuities of unit size.
Definition 1.4. The nth point of discontinuity of a simple counting process $N(t)$ is called the nth arrival instant and denoted by $S_{n}: \Omega \rightarrow \mathbb{R}_{+}$such that

$$
S_{0} \triangleq 0, \quad S_{n} \triangleq \inf \{t \geqslant 0: N(t) \geqslant n\}, n \in \mathbb{N}
$$

The random sequence of arrival instants is denoted by $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$. The inter arrival time between $(n-1)$ th and nth arrival is denoted by $X_{n} \triangleq S_{n}-S_{n-1}$.

Remark 1. The arrival sequence S is non-decreasing for each outcome $\omega \in \Omega$. That is, $S_{n} \leqslant S_{n+1}$ for all $n \in \mathbb{N}$.
Remark 2. Let $\mathcal{F}_{\bullet}=\left(\mathcal{F}_{s}: s \geqslant 0\right)$ be the natural filtration associated with the counting process N, that is $\mathcal{F}_{t}=$ $\sigma(N(t), t \geqslant 0)$. Then $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is a sequence of stopping times with respect to \mathcal{F}_{\bullet}.

Figure 1: Sample path of a simple counting process.

Lemma 1.5 (Inverse processes). Inverse of a simple counting process N is its corresponding arrival process S. That is,

$$
\begin{equation*}
\left\{S_{n} \leqslant t\right\}=\{N(t) \geqslant n\} . \tag{1}
\end{equation*}
$$

Proof. Let $\omega \in\left\{S_{n} \leqslant t\right\}$. Since N is a non-decreasing process, we have $N(t) \geqslant N\left(S_{n}\right)=n$. Conversely, let $\omega \in\{N(t) \geqslant n\}$, then it follows from definition that $S_{n} \leqslant t$.

Corollary 1.6. The probability mass function for the counting process $N(t)$ at time t can be written in terms of distribution functions of arrival sequence S as

$$
P\{N(t)=n\}=F_{S_{n}}(t)-F_{S_{n+1}}(t) .
$$

Proof. The event $\{N(t) \geqslant n\}$ equal union of two disjoint events $\{N(t)=n\} \cup\{N(t) \geqslant n+1\}$, and the result follows from the probability of disjoint unions.

Definition 1.7. A point process is a collection $S: \Omega \rightarrow X^{\mathbb{N}}$ of randomly distributed points, such that $\lim _{n \rightarrow \infty}\left|S_{n}\right|=\infty$. A point process is simple if the points are distinct. Let $N(\emptyset)=0$ and denote the number of points in a measurable set $A \in \mathcal{B}(X)$ by

$$
N(A)=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \in A\right\}}
$$

Then $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathcal{B}(X)}$ is called a counting process for the simple point process S.
Remark 3. When $X=\mathbb{R}_{+}$, one can order these points of S as an increasing sequence such that $S_{1}<S_{2}<\ldots$, and denote number of points in half-open interval by

$$
N(t) \triangleq N(0, t]=\sum_{n \in \mathbb{N}} \mathbb{1}_{(0, t]}\left(S_{n}\right)=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \leqslant t\right\}} .
$$

Remark 4. For a simple point process, we have $P\left(\left\{X_{n}=0\right\}\right)=P\left(\left\{X_{n} \leqslant 0\right\}\right)=0$.
Remark 5. General point processes in higher dimension don't have any inter-arrival time interpretation.

2 Renewal processes

We will consider inter-arrival times $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ to be a sequence of non-negative iid random variables with a common distribution F, such that $F(0)<1$ and mean $\mu=\mathbb{E} X_{1}=\int_{\mathbb{R}} x d F(x)$ is finite. We interpret X_{n} as the time between $(n-1)^{\text {st }}$ and the $n^{\text {th }}$ renewal event.
Definition 2.1 (Renewal Instants). Let S_{n} denote the time of $n^{\text {th }}$ renewal instant and assume $S_{0}=0$. Then, we have

$$
S_{n} \triangleq \sum_{i=1}^{n} X_{i}, \quad n \in \mathbb{N}
$$

The random sequence $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is called sequence of renewal instants or renewal sequence.
Remark 6. The condition $F(0<1$ on inter-arrival times implies non-degenerate renewal process. If $F(0)$ is equal to 1 then it is a trivial process.
Definition 2.2 (Renewal process). The associated counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$that counts number of renewal until time t with iid general inter-renewal times is called a renewal process, written as

$$
N(t) \triangleq \sup \left\{n \in \mathbb{Z}_{+}: S_{n} \leqslant t\right\}=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \leqslant t\right\}}
$$

Definition 2.3. A renewal process S is said to be recurrent if the inter-renewal time X_{n} is finite almost surely for every $n \in \mathbb{N}$, the process is called transient otherwise.
Definition 2.4. The process is said to be periodic with period d if the inter-renewal times $X: \Omega \rightarrow X^{\mathbb{N}}$ take values in a discrete set $\mathcal{X} \subseteq\left\{n d: n \in \mathbb{Z}_{+}\right\}$and $d=\operatorname{gcd}(\mathcal{X})$ is the largest such number. Otherwise, if there is no such $d>0$, then the process is said to be aperiodic. If the inter-arrival times is a periodic random variable, then the associated distribution function F is called lattice.

Example 2.5 (Random walk). Random walk S on \mathbb{R}^{d} with iid non-negative step-sizes $\left(X_{n}: n \in \mathbb{N}\right)$ is a renewal process.
Example 2.6 (Markov chain). Let $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$be a discrete time homogeneous Markov chain X with state space X. For $X_{0}=i \in X, \tau_{i}^{+}(0)=0$, let the recurrent times be defined inductively as

$$
\begin{equation*}
\tau_{i}(n)^{+}=\inf \left\{k>\tau_{i}^{+}(n-1): X_{k}=i\right\} . \tag{2}
\end{equation*}
$$

It follows from the strong Markov property of the process X, that $\tau_{i}^{+}: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{Z}_{+}}$is a renewal sequence.

3 Delayed renewal process

Many times in practice, we have a delayed start to a renewal process. That is, the arrival process has independent inter-arrival times $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$, where the common distribution for X_{n} is F when $n \geqslant 2$, and the distribution of first inter-arrival time X_{1} is G. Let the first renewal instant be $S_{0}=0$ and nth arrival instant be $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ for all $n \in \mathbb{N}$.

The associated counting process is called a delayed renewal process and denoted by $N_{D}: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$. The following inverse relationship continues to hold between counting and arrival process,

$$
\begin{equation*}
N_{D}(t)=\sup \left\{n \in \mathbb{N}: S_{n} \leqslant t\right\} . \tag{3}
\end{equation*}
$$

Example 3.1 (Markov chain). Let $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$be a discrete time homogeneous Markov chain X with state space V. For $X_{0}=x \in X$ and for $y \neq x$ let $\tau_{y}^{+}(0)=0$, let the recurrent times be defined inductively as

$$
\tau_{y}(k)^{+} \triangleq \inf \left\{n>\tau_{y}^{+}(k-1): X_{n}=y\right\} .
$$

It follows from the strong Markov property of the process X, that $\tau_{j}^{+}: \Omega \rightarrow \mathbb{N}^{\mathbb{Z}_{+}}$is a delayed renewal sequence.

