Lecture-07: Properties of Renewal Process

1 Properties of renewal processes

1.1 Finiteness of counting process

Lemma 1.1 (Finiteness). For a renewal process with positive $\mathbb{E} X_{n}>0$, the number of renewals $N(t)$ in the time duration $(0, t]$ is a.s. finite for all $t>0$.

Proof. We are interested in knowing how many renewals occur per unit time. From strong law of large numbers, we know that

$$
\begin{equation*}
P\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}=1 \tag{1}
\end{equation*}
$$

Since $\mu>0$, we must have S_{n} growing arbitrarily large as n increases. Thus, S_{n} can be finite for at most finitely many n. Indeed for any finite t, we have the the following set inclusion

$$
\begin{equation*}
\bigcap_{n \in \mathbb{N}}\{N(t) \geqslant n\}=\bigcap_{n \in \mathbb{N}}\left\{S_{n} \leqslant t\right\} \subseteq \bigcap_{n \in \mathbb{N}}\left\{\frac{S_{n}}{n} \leqslant \frac{t}{n}\right\} \subseteq\left\{\limsup _{n \in \mathbb{N}} \frac{S_{n}}{n}=0\right\} . \tag{2}
\end{equation*}
$$

Since, $\left\{\limsup _{n \in \mathbb{N}} \frac{S_{n}}{n}=0\right\} \subset\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}^{c}$, it follows that $P\{N(t)=\infty\}=0$ for any finite t. The result follows and $N(t)=\max \left\{n \in \mathbb{N}_{0}: S_{n} \leqslant t\right\}$.

Corollary 1.2. For a delayed renewal process with positive $\mathbb{E} X_{n}>0$ for $n \geqslant 2$ and finite mean $\mathbb{E} X_{1}$, the number of renewals $N_{D}(t)$ in the time duration $(0, t]$ is a.s. finite for all $t>0$.

1.2 Distribution functions

Lemma 1.3. The distribution function of nth renewal instant $S_{n}=\sum_{i=1}^{n} X_{i}$ is given by $P\left\{S_{n} \leqslant t\right\}=F_{n}(t)$ for all $t \in \mathbb{R}$, where F_{n} is n-fold convolution of the distribution function F for a single i.i.d. inter-arrival time X_{i}. The distribution function F_{n} is computed inductively as $F_{n}=F_{n-1} * F$, where $F_{1}=F$.

Corollary 1.4. The distribution function of nth arrival instant S_{n} for delayed renewal process is $G * F_{n-1}$.
Corollary 1.5. The distribution function of counting process $N_{D}(t)$ for the delayed renewal process is

$$
\begin{equation*}
P\left\{N_{D}(t)=n\right\}=P\left\{S_{n} \leqslant t\right\}-P\left\{S_{n+1} \leqslant t\right\}=\left(G * F_{n-1}\right)(t)-\left(G * F_{n}\right)(t) . \tag{3}
\end{equation*}
$$

1.3 Renewal function

Mean of the counting process $N(t)$ is called the renewal function denoted by $m(t)=\mathbb{E}[N(t)]$.
Proposition 1.6. Renewal function can be expressed in terms of distribution of renewal instants as

$$
m(t)=\sum_{n \in \mathbb{N}} F_{n}(t)
$$

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

$$
m(t)=\mathbb{E}[N(t)]=\sum_{n \in \mathbb{N}} P\{N(t) \geqslant n\}=\sum_{n \in \mathbb{N}} P\left\{S_{n} \leqslant t\right\}=\sum_{n \in \mathbb{N}} F_{n}(t) .
$$

We can exchange integrals and summations since the integrand is positive using monotone convergence theorem.

Corollary 1.7. The renewal function for the delayed renewal process $N_{D}(t)$ is $m_{D}=G *(1+m)$.

Proof. We can write the renewal function for the delayed renewal process as

$$
\begin{equation*}
m_{D}(t)=\mathbb{E} N_{D}(t)=\sum_{n \in \mathbb{N}}\left(G * F_{n-1}\right)(t)=G(t)+(G * m)(t) . \tag{4}
\end{equation*}
$$

Corollary 1.8. We denote the Laplace transform for the inter-arrival time distribution F by $\mathcal{L}(F)=\tilde{F}$, then the Laplace transform of the renewal function m is given by

$$
\tilde{m}(s)=\frac{1}{1-\tilde{F}(s)}, \quad \Re\{\tilde{F}(s)\}<1
$$

Lemma 1.9. Let the Laplace transforms for the distributions of the first inter-arrival time and the subsequent inter-arrival times be denoted by $\tilde{G}=\mathcal{L}(G)$ and $\tilde{F}=\mathcal{L}(F)$ respectively, then the Laplace transform of the renewal function m_{D} for the delayed renewal process is

$$
\begin{equation*}
\tilde{m}_{D}(s)=\frac{\tilde{G}(s)}{1-\tilde{F}(s)}, \quad \Re\{\tilde{F}(s)\}<1 . \tag{5}
\end{equation*}
$$

Proposition 1.10. For renewal process with $\mathbb{E} X_{n}>0$, the renewal function is bounded for all finite times.
Proof. Since we assumed that $P\left\{X_{n}=0\right\}<1$, it follow from continuity of probabilities that there exists $\alpha>0$, such that $P\left\{X_{n} \geqslant \alpha\right\}=\beta>0$. We can define bivariate random variables

$$
\begin{equation*}
\bar{X}_{n}=\alpha 1_{\left\{X_{n} \geqslant \alpha\right\}} \leqslant X_{n} . \tag{6}
\end{equation*}
$$

Note that since X_{i} 's are $i i d$, so are \bar{X}_{i} 's. Each \bar{X}_{i} takes values in $\{0, \alpha\}$ with probabilities $1-\beta$ and β respectively. Let $\bar{N}(t)$ denote the renewal process with inter-arrival times \bar{X}_{n}, with arrivals at integer multiples of α. Then for all sample paths, we have

$$
\begin{equation*}
N(t)=\sum_{n \in \mathbb{N}} 1_{\left\{\sum_{i=1}^{n} X_{i} \leqslant t\right\}}=\sum_{n \in \mathbb{N}} 1_{\left\{\sum_{i=1}^{n} \bar{X}_{i} \leqslant t\right\}}=\bar{N}(t) . \tag{7}
\end{equation*}
$$

Hence, it follows that $\mathbb{E} N(t) \leq \mathbb{E} \bar{N}(t)$, and we will show that $\mathbb{E} \bar{N}(t)$ is finite. We can write the joint distribution of number of arrivals at each arrival instant $l \alpha$, as
$P\left\{\bar{N}(0)=n_{1}, \bar{N}(\alpha)=n_{2}\right\}=P\left(\bigcap_{i=1}^{n_{1}}\left\{X_{i} \leq \alpha\right\} \bigcap\left\{X_{n_{1}+1} \geq \alpha, X_{n_{2}+1} \geq \alpha\right\} \bigcap_{i=2}^{n_{2}}\left\{X_{n_{1}+i}<\alpha\right\}\right)=(1-\beta)^{n_{1}} \beta(1-\beta)^{n_{2}-1} \beta$.

It follows that the number of arrivals is independent at each arrival instant $k \alpha$ and geometrically distributed with mean $1 / \beta$ and $(1-\beta) / \beta$ for $k \in \mathbb{N}$ and $k=0$ respectively. Thus, for all $t \geqslant 0$,

$$
\begin{equation*}
\mathbb{E} N(t) \leqslant \mathbb{E} \bar{N}(t) \leqslant \frac{\left\lceil\frac{t}{\alpha}\right\rceil}{\beta} \leqslant \frac{\frac{t}{\alpha}+1}{\beta}<\infty . \tag{9}
\end{equation*}
$$

Corollary 1.11. For delay renewal process with $\mathbb{E} X_{n}>0$, the renewal function is bounded at all finite times.

A Convolution of distribution functions

Definition A.1. For two distribution functions $F, G: \mathbb{R} \rightarrow[0,1]$ the convolution of F and G is a distribution function $F * G: \mathbb{R} \rightarrow[0,1]$ defined as

$$
(F * G)(x) \triangleq \int_{y \in \mathbb{R}} F(x-y) d G(y), x \in \mathbb{R}
$$

Remark 1. Verify that $F * G$ is indeed a distribution function. That is, the function $(F * G)$ is
(a) right continuous, i.e. $\lim _{x_{n} \downarrow x}(F * G)\left(x_{n}\right)$ exists,
(b) non-decreasing, i.e. $(F * G)(z) \geqslant(F * G)(x)$ for all $z \geqslant x$,
(c) having left limit of zero and right limit of unity, i.e. $\lim _{x \rightarrow-\infty}(F * G)(x)=0, \lim _{x \rightarrow \infty}(F * G)(x)=1$.

Remark 2. Verify that convolution is a symmetric and bi-linear operator. That is, for any distribution functions (F, G) and $\left(F_{i}: i \in[n]\right),\left(G_{j}: j \in[m]\right)$ and vectors $\alpha \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{m}$, we have

$$
F * G=G * F, \quad\left(\sum_{i \in[n]} \alpha_{i} F_{i}\right) *\left(\sum_{j \in[m]} \beta_{j} G_{j}\right)=\sum_{i \in[n]} \sum_{j \in[m]} \alpha_{i} \beta_{j}\left(F_{i} * G_{j}\right) .
$$

Lemma A.2. Let X and Y be two independent random variables defined on the probability space (Ω, \mathcal{F}, P) with distribution functions F and G respectively, then the distribution of $X+Y$ is given by $F * G$.

Proof. The distribution function of $\operatorname{sum} X+Y$ is given by $H: \mathbb{R} \rightarrow[0,1]$ where for any $z \in \mathbb{R}$,

$$
H(z)=\mathbb{E} \mathbb{1}_{\{X+Y \leqslant z\}}=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{X+Y \leqslant z\}} \mid \sigma(Y)\right]\right]=\mathbb{E}[F(z-Y)]=\int_{y \in \mathbb{R}_{+}} F(z-y) d G(y)
$$

Definition A.3. Let $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be an independent random sequence defined on the probability space (Ω, \mathcal{F}, P) with distribution function F, then the distribution of $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ is given by $F_{n} \triangleq F_{n-1} * F$ for all $n \geqslant 2$ and $F_{1}=F$.

B Laplace transform of distribution functions

Definition B.1. For a distribution function $F: \mathbb{R} \rightarrow[0,1]$ the Laplace transform $\mathcal{L}(F)$ is a map $\tilde{F}: \mathbb{C} \rightarrow \mathbb{C}$ defined

$$
\tilde{F}(s) \triangleq \int_{y \in \mathbb{R}} e^{-s y} d F(y)
$$

where s lies in the region such that $|\tilde{F}(s)|<\infty$.
Lemma B.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform of individual distribution functions.

Proof. Let $F, G: \mathbb{R} \rightarrow[0,1]$ be two distribution functions such that $\mathcal{L}(F)=\tilde{F}$ and $\mathcal{L}(G)=\tilde{G}$, then

$$
\mathcal{L}(F * G)(s)=\int_{x \in \mathbb{R}} e^{-s x} \int_{y \in \mathbb{R}} d F(x-y) d G(y)=\int_{y \in \mathbb{R}} e^{-s y} d G(y) \int_{x-y \in \mathbb{R}} e^{-s(x-y)} d F(x-y)=\tilde{F}(s) \tilde{G}(s) .
$$

Corollary B.3. Let X and Y be two independent random variables defined on the probability space (Ω, \mathcal{F}, P) with Laplace transform of distribution functions \tilde{F} and \tilde{G} respectively, then the Laplace transform of the distribution of $X+Y$ is given by $\tilde{F} \tilde{G}$.

Corollary B.4. Let $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be an independent random sequence defined on the probability space (Ω, \mathcal{F}, P) with the Laplace transform of the distribution function given by \tilde{F}, then the Laplace transform of the distribution of $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ is given by $\mathcal{L}\left(F_{n}\right)=(\tilde{F})^{n}$.

