Lecture-08: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Let N(o) = lim;_,., N(t). For finite mean renewal processes, P{N (o) = oo} = 1.
Proof. Tt suffices to show P{N(e) < oo} = 0. Since E[X,] < e, we have P {X,, = oo} =0 and
P{N(e0) <o} =P | J{N(eo) <n} =P |J{Sp =00} =P |J{Xs =0} < )} P{X, =} =0. 4))
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Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent inter-
renewal times, P{lim;_,e Np(t) = oo} = 1.

We observed that the number of renewals N(¢) increases to infinity with the length of the duration 7. We will
show that the growth of N(¢) is asymptotically linear with time ¢, and we will find this coefficient of linear growth
of N(t) with time ¢.

1.1 Strong law for renewal processes

Theorem 1.3 (Strong law). For a renewal counting process with inter-arrival times having a finite mean, we have
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Proof. Note that Sy(,) represents the time of last renewal before 7, and Sy ;)| represents the time of first renewal
after time 7. Clearly, we have Sy(;) <7 < Sy(;)41. Dividing by N (1), we get
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Since N(t) increases monotonically to infinity as 7 grows large, we can apply strong law of large numbers to the

. S
sum Sy ;) = Z?L(? X;, to get lim;_o, % = u almost surely. Hence the result follows. [
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Figure 1: Time of last renewal
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Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, lim;_. = I

Example 1.5. Suppose, you are in a casino with infinitely many games. Every game has a probability of win
X, iid uniformly distributed between (0, 1). One can continue to play a game or switch to another one. We
are interested in a strategy that maximizes the long-run proportion of wins. Let N(n) denote the number of
losses in n plays. Then the fraction of wins Py (n) is given by

Ay (n) = =),

n

We pick a strategy where any game is selected to play, and continue to be played till the first loss. Note that,
time till first loss is geometrically distributed with mean ﬁ We shall show that this fraction approaches

unity as n — co. By the previous proposition, we have:
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Hence Renewal theorems can be used to compute these long term averages. We’ll have many such theorems
in the following sections.

1.2 Elementary renewal theorem

Basic renewal theorem implies w converges to ﬁ almost surely. We are next interested in convergence of the
ratio @ Note that this is not obvious, since almost sure convergence doesn’t imply convergence in mean. To
illustrate this, we have the following example.

Example 1.6. Let X, be a Bernoulli random variable with P{X, =1} = 1/n. Let Y, = nX,. Then,
P{Y, =0} =1—1/n. Thatis ¥, — 0 a.s. However, E[Y,] = 1 foralln € N. So E[Y,] — 1.

Even though, basic renewal theorem does NOT imply it, we still have m(t) converging to ﬁ We first need this

t
technical Lemma.

Proposition 1.7 (Wald’s Lemma for Renewal Process). Let X : Q — IF@ be iid inter-arrival times of a renewal
process N(t) with i = E[X|] < oo, and let m(t) = E[N(t)] be its renewal function. Then, N(t)+ 1 is a stopping

time and
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Proof. We observe that for any n € N, the event {N(z) + 1 = n} belongs to 6(X{,...,X,), since
n—1 n—1
(NO)+1=n} ={Su1 <1 <8} = Y Xi<t < Y Xi+X, p € 6(X1,....Xp).
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Thus N(z) + 1 is a stopping time with respect to the random sequence X, and the result follows from Wald’s
Lemma. O

Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the
renewal function satisfies
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Proof. By the assumption, we have mean t < eo. Further, we know that Sy ;) > 7. Taking expectations on both
sides and using Proposition we have p(m(t) + 1) > ¢. Dividing both sides by ut and taking liminf on both
sides, we get
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We employ a truncated random variable argument to show the reverse inequality. We define truncated inter-
arrival times (X, = min(X,,, M) : n € N) with mean denoted by py. These modified inter-arrival times are iid and
hence we can define the corresponding renewal process (S, =Y, Xi:n €N) and the associated counting process
N(t) =Y, en ] (Su<i) Note that since S,, > S, the number of arrivals would be higher for renewal process N(t)
with truncated random variables. That is,
N(r) <N(7). (6)
Further, due to truncation of inter-arrival time, next renewal happens within M units of time, that is S N+ STHM.

Taking expectations on both sides in the above equation, using Proposition dividing both sides by s, and
taking limsup on both sides, we obtain
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Recognizing that limps_se. tyy = U, the result follows from taking expectations on both sides of (6), and the lower
bound on liminf on the ratio m(t) /. O

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have lim;_,o mDIﬁ = I%F

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain (X, € V : n € N)
taking values in a discrete set V. Let the initial state be Xo =i € V and T]Jf (0) =0 for j # i€V, then we can
inductively define the nth recurrent time to state j as a stopping time

rj*(n):inf{k>rj(n—1):xk:j}. %)

Since any discrete time Marko chain satisfies the strong Markov property, it follows that ( Tf (n) :n € N) form
a delayed renewal process with the first arrival distribution P, ’L'j+ = k} = fl(Jk) and the common distribution
of the inter-arrival duration X,,,n > 2 in terms of first return probability as

Pj{ff:k}:f;f), keN. 8)

We denote the associated counting process by (N;(n) : n € N), where N;(n) = Yien 1i5,<n) = Li—1 Lix,=j)
denotes the number of transitions to state j up to time n. Let u;; = E; T;_ be the finite mean inter-arrival time
for the renewal process, also the mean recurrence time to state j. From the strong law for delayed renewal

processes it follows that
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Since N;(n) is number of visits to state j in first n time steps, we have E;N;(n) =Y | P(Xi = j) =X;_, pg.()

From the basic renewal theorem for delayed renewal process it follows that
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1.3 Central limit theorem for renewal processes

Theorem 1.11. For a renewal process with inter-arrival times having finite mean W and finite variance 62, the
associated counting process converges to a normal random variable in distribution. Specifically,
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Proof. Take u = ﬁ +yo ﬁ We shall treat u as an integer and proceed, the proof for general u is an exercise.

Recall that {N(¢) < u} = {S, > t}. By equating probability measures on both sides, we get

P{N(t)<u}:P{S‘;:/l;u > t;jg}:P{S”;/;” >—y<1+\y/%>_1/2}.
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By central limit theorem, =% \/ME” converges to a normal random variable with zero mean and unit variance as ¢
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These results combine with the symmetry of normal random variable to give us the result. O

grows. We also observe that
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