Lecture-08: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Let $N(\infty) \triangleq \lim _{t \rightarrow \infty} N(t)$. For finite mean renewal processes, $P\{N(\infty)=\infty\}=1$.
Proof. It suffices to show $P\{N(\infty)<\infty\}=0$. Since $\mathbb{E}\left[X_{n}\right]<\infty$, we have $P\left\{X_{n}=\infty\right\}=0$ and

$$
\begin{equation*}
P\{N(\infty)<\infty\}=P \bigcup_{n \in \mathbb{N}}\{N(\infty)<n\}=P \bigcup_{n \in \mathbb{N}}\left\{S_{n}=\infty\right\}=P \bigcup_{n \in \mathbb{N}}\left\{X_{n}=\infty\right\} \leqslant \sum_{n \in \mathbb{N}} P\left\{X_{n}=\infty\right\}=0 . \tag{1}
\end{equation*}
$$

Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent interrenewal times, $P\left\{\lim _{t \rightarrow \infty} N_{D}(t)=\infty\right\}=1$.

We observed that the number of renewals $N(t)$ increases to infinity with the length of the duration t. We will show that the growth of $N(t)$ is asymptotically linear with time t, and we will find this coefficient of linear growth of $N(t)$ with time t.

1.1 Strong law for renewal processes

Theorem 1.3 (Strong law). For a renewal counting process with inter-arrival times having a finite mean, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mu} \text { almost surely. } \tag{2}
\end{equation*}
$$

Proof. Note that $S_{N(t)}$ represents the time of last renewal before t, and $S_{N(t)+1}$ represents the time of first renewal after time t. Clearly, we have $S_{N(t)} \leqslant t<S_{N(t)+1}$. Dividing by $N(t)$, we get

$$
\begin{equation*}
\frac{S_{N(t)}}{N(t)} \leqslant \frac{t}{N(t)}<\frac{S_{N(t)+1}}{N(t)} \tag{3}
\end{equation*}
$$

Since $N(t)$ increases monotonically to infinity as t grows large, we can apply strong law of large numbers to the sum $S_{N(t)}=\sum_{i=1}^{N(t)} X_{i}$, to get $\lim _{t \rightarrow \infty} \frac{S_{N(t)}}{N(t)}=\mu$ almost surely. Hence the result follows.

Figure 1: Time of last renewal

Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, $\lim _{t \rightarrow \infty} \frac{N_{D}(t)}{t}=\frac{1}{\mu_{F}}$.

Example 1.5. Suppose, you are in a casino with infinitely many games. Every game has a probability of win X, iid uniformly distributed between $(0,1)$. One can continue to play a game or switch to another one. We are interested in a strategy that maximizes the long-run proportion of wins. Let $N(n)$ denote the number of losses in n plays. Then the fraction of wins $P_{W}(n)$ is given by

$$
P_{W}(n)=\frac{n-N(n)}{n}
$$

We pick a strategy where any game is selected to play, and continue to be played till the first loss. Note that, time till first loss is geometrically distributed with mean $\frac{1}{1-X}$. We shall show that this fraction approaches unity as $n \rightarrow \infty$. By the previous proposition, we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{N(n)}{n} & =\frac{1}{\mathbb{E}[\text { Time till first loss }]} \\
& =\frac{1}{\mathbb{E}\left[\frac{1}{1-X}\right]}=\frac{1}{\infty}=0
\end{aligned}
$$

Hence Renewal theorems can be used to compute these long term averages. We'll have many such theorems in the following sections.

1.2 Elementary renewal theorem

Basic renewal theorem implies $\frac{N(t)}{t}$ converges to $\frac{1}{\mu}$ almost surely. We are next interested in convergence of the ratio $\frac{m(t)}{t}$. Note that this is not obvious, since almost sure convergence doesn't imply convergence in mean. To illustrate this, we have the following example.

Example 1.6. Let X_{n} be a Bernoulli random variable with $P\left\{X_{n}=1\right\}=1 / n$. Let $Y_{n}=n X_{n}$. Then, $P\left\{Y_{n}=0\right\}=1-1 / n$. That is $Y_{n} \rightarrow 0$ a.s. However, $\mathbb{E}\left[Y_{n}\right]=1$ for all $n \in \mathbb{N}$. So $\mathbb{E}\left[Y_{n}\right] \rightarrow 1$.

Even though, basic renewal theorem does NOT imply it, we still have $\frac{m(t)}{t}$ converging to $\frac{1}{\mu}$. We first need this technical Lemma.

Proposition 1.7 (Wald's Lemma for Renewal Process). Let $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ be iid inter-arrival times of a renewal process $N(t)$ with $\mu=\mathbb{E}\left[X_{1}\right]<\infty$, and let $m(t)=\mathbb{E}[N(t)]$ be its renewal function. Then, $N(t)+1$ is a stopping time and

$$
\mathbb{E}\left[\sum_{i=1}^{N(t)+1} X_{i}\right]=\mu(1+m(t))
$$

Proof. We observe that for any $n \in \mathbb{N}$, the event $\{N(t)+1=n\}$ belongs to $\sigma\left(X_{1}, \ldots, X_{n}\right)$, since

$$
\{N(t)+1=n\}=\left\{S_{n-1} \leqslant t<S_{n}\right\}=\left\{\sum_{i=1}^{n-1} X_{i} \leqslant t<\sum_{i=1}^{n-1} X_{i}+X_{n}\right\} \in \sigma\left(X_{1}, \ldots, X_{n}\right)
$$

Thus $N(t)+1$ is a stopping time with respect to the random sequence X, and the result follows from Wald's Lemma.

Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the renewal function satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{m(t)}{t}=\frac{1}{\mu} \tag{4}
\end{equation*}
$$

Proof. By the assumption, we have mean $\mu<\infty$. Further, we know that $S_{N(t)+1}>t$. Taking expectations on both sides and using Proposition 1.7, we have $\mu(m(t)+1)>t$. Dividing both sides by μt and taking liminf on both sides, we get

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{m(t)}{t} \geqslant \frac{1}{\mu} \tag{5}
\end{equation*}
$$

We employ a truncated random variable argument to show the reverse inequality. We define truncated interarrival times $\left(\bar{X}_{n}=\min \left(X_{n}, M\right): n \in \mathbb{N}\right)$ with mean denoted by μ_{M}. These modified inter-arrival times are iid and hence we can define the corresponding renewal process ($\bar{S}_{n}=\sum_{i=1}^{n} \bar{X}_{i}: n \in \mathbb{N}$) and the associated counting process $\bar{N}(t)=\sum_{n \in \mathbb{N}} 1_{\left\{\bar{S}_{n} \leqslant t\right\}}$. Note that since $S_{n} \geqslant \bar{S}_{n}$, the number of arrivals would be higher for renewal process $\bar{N}(t)$ with truncated random variables. That is,

$$
\begin{equation*}
N(t) \leqslant \bar{N}(t) \tag{6}
\end{equation*}
$$

Further, due to truncation of inter-arrival time, next renewal happens within M units of time, that is $\bar{S}_{\bar{N}(t)+1} \leq t+M$. Taking expectations on both sides in the above equation, using Proposition 1.7, dividing both sides by $t \mu_{M}$, and taking limsup on both sides, we obtain

$$
\limsup _{t \rightarrow \infty} \frac{\bar{m}(t)}{t} \leqslant \frac{1}{\mu_{M}}
$$

Recognizing that $\lim _{M \rightarrow \infty} \mu_{M}=\mu$, the result follows from taking expectations on both sides of (6), and the lower bound on liminf on the ratio $m(t) / t$.

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have $\lim _{t \rightarrow \infty} \frac{m_{D}(t)}{t}=\frac{1}{\mu_{F}}$.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain $\left(X_{n} \in V: n \in \mathbb{N}\right)$ taking values in a discrete set V. Let the initial state be $X_{0}=i \in V$ and $\tau_{j}^{+}(0)=0$ for $j \neq i \in V$, then we can inductively define the nth recurrent time to state j as a stopping time

$$
\begin{equation*}
\tau_{j}^{+}(n)=\inf \left\{k>\tau_{j}^{+}(n-1): X_{k}=j\right\} \tag{7}
\end{equation*}
$$

Since any discrete time Marko chain satisfies the strong Markov property, it follows that ($\tau_{j}^{+}(n): n \in \mathbb{N}$) form a delayed renewal process with the first arrival distribution $P_{i}\left\{\tau_{j}^{+}=k\right\}=f_{i j}^{(k)}$, and the common distribution of the inter-arrival duration $X_{n}, n \geqslant 2$ in terms of first return probability as

$$
\begin{equation*}
P_{j}\left\{\tau_{j}^{+}=k\right\}=f_{j j}^{(k)}, k \in \mathbb{N} . \tag{8}
\end{equation*}
$$

We denote the associated counting process by $\left(N_{j}(n): n \in \mathbb{N}\right)$, where $N_{j}(n)=\sum_{i \in \mathbb{N}} 1_{\left\{S_{i} \leqslant n\right\}}=\sum_{k=1}^{n} 1_{\left\{X_{k}=j\right\}}$ denotes the number of transitions to state j up to time n. Let $\mu_{j j}=\mathbb{E}_{j} \tau_{j}^{+}$be the finite mean inter-arrival time for the renewal process, also the mean recurrence time to state j. From the strong law for delayed renewal processes it follows that

$$
\begin{equation*}
P_{j}\left\{\lim _{n \in \mathbb{N}} \frac{N_{j}(n)}{n}=\frac{1}{\mu_{j j}}\right\}=1 \tag{9}
\end{equation*}
$$

Since $N_{j}(n)$ is number of visits to state j in first n time steps, we have $\mathbb{E}_{i} N_{j}(n)=\sum_{k=1}^{n} P_{i}\left(X_{k}=j\right)=\sum_{k=1}^{n} p_{i j}^{(k)}$ From the basic renewal theorem for delayed renewal process it follows that

$$
\begin{equation*}
\lim _{n \in \mathbb{N}} \frac{\sum_{k=1}^{n} p_{i j}^{(k)}}{n}=\lim _{n \in \mathbb{N}} \frac{\mathbb{E}_{i}\left[N_{j}(n)\right]}{n}=\frac{1}{\mu_{j j}} . \tag{10}
\end{equation*}
$$

1.3 Central limit theorem for renewal processes

Theorem 1.11. For a renewal process with inter-arrival times having finite mean μ and finite variance σ^{2}, the associated counting process converges to a normal random variable in distribution. Specifically,

$$
\lim _{t \rightarrow \infty} P\left\{\frac{N(t)-\frac{t}{\mu}}{\sigma \sqrt{\frac{t}{\mu^{3}}}}<y\right\}=\int_{-\infty}^{y} e^{-\frac{x^{2}}{2}} d x
$$

Proof. Take $u=\frac{t}{\mu}+y \sigma \sqrt{\frac{t}{\mu^{3}}}$. We shall treat u as an integer and proceed, the proof for general u is an exercise. Recall that $\{N(t)<u\}=\left\{S_{u}>t\right\}$. By equating probability measures on both sides, we get

$$
P\{N(t)<u\}=P\left\{\frac{S_{u}-u \mu}{\sigma \sqrt{u}}>\frac{t-u \mu}{\sigma \sqrt{u}}\right\}=P\left\{\frac{S_{u}-u \mu}{\sigma \sqrt{u}}>-y\left(1+\frac{y \sigma}{\sqrt{t u}}\right)^{-1 / 2}\right\} .
$$

By central limit theorem, $\frac{S_{u}-u \mu}{\sigma \sqrt{u}}$ converges to a normal random variable with zero mean and unit variance as t grows. We also observe that

$$
\lim _{t \rightarrow \infty}-y\left(1+\frac{y \sigma}{\sqrt{t u}}\right)^{-1 / 2}=-y
$$

These results combine with the symmetry of normal random variable to give us the result.

