
Lecture-08: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Let N(∞), limt→∞ N(t). For finite mean renewal processes, P{N(∞) = ∞}= 1.

Proof. It suffices to show P{N(∞)< ∞}= 0. Since E[Xn]< ∞, we have P{Xn = ∞}= 0 and

P{N(∞)< ∞}= P
⋃

n∈N
{N(∞)< n}= P

⋃
n∈N
{Sn = ∞}= P

⋃
n∈N
{Xn = ∞}6 ∑

n∈N
P{Xn = ∞}= 0. (1)

Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent inter-
renewal times, P{limt→∞ ND(t) = ∞}= 1.

We observed that the number of renewals N(t) increases to infinity with the length of the duration t. We will
show that the growth of N(t) is asymptotically linear with time t, and we will find this coefficient of linear growth
of N(t) with time t.

1.1 Strong law for renewal processes
Theorem 1.3 (Strong law). For a renewal counting process with inter-arrival times having a finite mean, we have

lim
t→∞

N(t)
t

=
1
µ

almost surely. (2)

Proof. Note that SN(t) represents the time of last renewal before t, and SN(t)+1 represents the time of first renewal
after time t. Clearly, we have SN(t) 6 t < SN(t)+1. Dividing by N(t), we get

SN(t)

N(t)
6

t
N(t)

<
SN(t)+1

N(t)
. (3)

Since N(t) increases monotonically to infinity as t grows large, we can apply strong law of large numbers to the
sum SN(t) = ∑

N(t)
i=1 Xi, to get limt→∞

SN(t)
N(t) = µ almost surely. Hence the result follows.
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Figure 1: Time of last renewal
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Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, limt→∞
ND(t)

t = 1
µF

.

Example 1.5. Suppose, you are in a casino with infinitely many games. Every game has a probability of win
X , iid uniformly distributed between (0,1). One can continue to play a game or switch to another one. We
are interested in a strategy that maximizes the long-run proportion of wins. Let N(n) denote the number of
losses in n plays. Then the fraction of wins PW (n) is given by

PW (n) =
n−N(n)

n
.

We pick a strategy where any game is selected to play, and continue to be played till the first loss. Note that,
time till first loss is geometrically distributed with mean 1

1−X . We shall show that this fraction approaches
unity as n→ ∞. By the previous proposition, we have:

lim
n→∞

N(n)
n

=
1

E[Time till first loss]

=
1

E
[ 1

1−X

] = 1
∞

= 0

Hence Renewal theorems can be used to compute these long term averages. We’ll have many such theorems
in the following sections.

1.2 Elementary renewal theorem

Basic renewal theorem implies N(t)
t converges to 1

µ
almost surely. We are next interested in convergence of the

ratio m(t)
t . Note that this is not obvious, since almost sure convergence doesn’t imply convergence in mean. To

illustrate this, we have the following example.

Example 1.6. Let Xn be a Bernoulli random variable with P{Xn = 1} = 1/n. Let Yn = nXn. Then,
P{Yn = 0}= 1−1/n. That is Yn→ 0 a.s. However, E[Yn] = 1 for all n ∈ N. So E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we still have m(t)
t converging to 1

µ
. We first need this

technical Lemma.

Proposition 1.7 (Wald’s Lemma for Renewal Process). Let X : Ω→ RN
+ be iid inter-arrival times of a renewal

process N(t) with µ = E[X1] < ∞, and let m(t) = E[N(t)] be its renewal function. Then, N(t)+ 1 is a stopping
time and

E

[
N(t)+1

∑
i=1

Xi

]
= µ(1+m(t)).

Proof. We observe that for any n ∈ N, the event {N(t)+1 = n} belongs to σ(X1, . . . ,Xn), since

{N(t)+1 = n}= {Sn−1 6 t < Sn}=

{
n−1

∑
i=1

Xi 6 t <
n−1

∑
i=1

Xi +Xn

}
∈ σ(X1, . . . ,Xn).

Thus N(t) + 1 is a stopping time with respect to the random sequence X , and the result follows from Wald’s
Lemma.

Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the
renewal function satisfies

lim
t→∞

m(t)
t

=
1
µ
. (4)
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Proof. By the assumption, we have mean µ < ∞. Further, we know that SN(t)+1 > t. Taking expectations on both
sides and using Proposition 1.7, we have µ(m(t)+ 1) > t. Dividing both sides by µt and taking liminf on both
sides, we get

liminf
t→∞

m(t)
t

>
1
µ
. (5)

We employ a truncated random variable argument to show the reverse inequality. We define truncated inter-
arrival times (X̄n = min(Xn,M) : n ∈ N) with mean denoted by µM . These modified inter-arrival times are iid and
hence we can define the corresponding renewal process (S̄n = ∑

n
i=1 X̄i : n∈N) and the associated counting process

N̄(t) = ∑n∈N 1{S̄n6t}. Note that since Sn > S̄n, the number of arrivals would be higher for renewal process N̄(t)
with truncated random variables. That is,

N(t)6 N̄(t). (6)

Further, due to truncation of inter-arrival time, next renewal happens within M units of time, that is S̄N̄(t)+1≤ t+M.
Taking expectations on both sides in the above equation, using Proposition 1.7, dividing both sides by tµM , and
taking limsup on both sides, we obtain

limsup
t→∞

m̄(t)
t

6
1

µM
.

Recognizing that limM→∞ µM = µ , the result follows from taking expectations on both sides of (6), and the lower
bound on liminf on the ratio m(t)/t.

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have limt→∞
mD(t)

t = 1
µF

.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain (Xn ∈ V : n ∈ N)
taking values in a discrete set V . Let the initial state be X0 = i ∈V and τ

+
j (0) = 0 for j 6= i ∈V , then we can

inductively define the nth recurrent time to state j as a stopping time

τ
+
j (n) = inf

{
k > τ

+
j (n−1) : Xk = j

}
. (7)

Since any discrete time Marko chain satisfies the strong Markov property, it follows that (τ+j (n) : n∈N) form

a delayed renewal process with the first arrival distribution Pi

{
τ
+
j = k

}
= f (k)i j , and the common distribution

of the inter-arrival duration Xn,n > 2 in terms of first return probability as

Pj

{
τ
+
j = k

}
= f (k)j j , k ∈ N. (8)

We denote the associated counting process by (N j(n) : n ∈ N), where N j(n) = ∑i∈N 1{Si6n} = ∑
n
k=1 1{Xk= j}

denotes the number of transitions to state j up to time n. Let µ j j = E jτ
+
j be the finite mean inter-arrival time

for the renewal process, also the mean recurrence time to state j. From the strong law for delayed renewal
processes it follows that

Pj

{
lim
n∈N

N j(n)
n

=
1

µ j j

}
= 1. (9)

Since N j(n) is number of visits to state j in first n time steps, we have EiN j(n) = ∑
n
k=1 Pi(Xk = j) = ∑

n
k=1 p(k)i j

From the basic renewal theorem for delayed renewal process it follows that

lim
n∈N

∑
n
k=1 p(k)i j

n
= lim

n∈N

Ei[N j(n)]
n

=
1

µ j j
. (10)
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1.3 Central limit theorem for renewal processes
Theorem 1.11. For a renewal process with inter-arrival times having finite mean µ and finite variance σ2, the
associated counting process converges to a normal random variable in distribution. Specifically,

lim
t→∞

P

N(t)− t
µ

σ

√
t

µ3

< y

=
∫ y

−∞

e−
x2
2 dx.

Proof. Take u = t
µ
+ yσ

√
t

µ3 . We shall treat u as an integer and proceed, the proof for general u is an exercise.

Recall that {N(t)< u}= {Su > t}. By equating probability measures on both sides, we get

P{N(t)< u}= P
{

Su−uµ

σ
√

u
>

t−uµ

σ
√

u

}
= P

{
Su−uµ

σ
√

u
>−y

(
1+

yσ√
tu

)−1/2
}
.

By central limit theorem, Su−uµ

σ
√

u converges to a normal random variable with zero mean and unit variance as t
grows. We also observe that

lim
t→∞
−y
(

1+
yσ√

tu

)−1/2

=−y.

These results combine with the symmetry of normal random variable to give us the result.

4


	Growth of renewal counting processes
	Strong law for renewal processes
	Elementary renewal theorem
	Central limit theorem for renewal processes


