
Lecture-10: Key Lemma and Blackwell Theorem

1 Key Lemma
Theorem 1.1 (Key Lemma). Let S : Ω→ RN

+ be a renewal process with i.i.d.inter-renewal times X : Ω→ RN
+

having common distribution function F, associated counting process N(t), and the renewal function m(t). Then,

P
{

SN(t) 6 s
}
= F̄(t)+

∫ s

0
F̄(t− y)dm(y), t ≥ s≥ 0.

Proof. We can see that event of time of last renewal prior to t being smaller than another time s can be partitioned
into disjoint events corresponding to number of renewals till time t. Each of these disjoint events is equivalent to
occurrence of nth renewal before time s and (n+1)th renewal past time t. That is,{

SN(t) 6 s
}
=

⋃
n∈Z+

{
SN(t) 6 s,N(t) = n

}
=

⋃
n∈Z+

{Sn 6 s,Sn+1 > t} .

Recognizing that S0 = 0,S1 = X1, and that Sn+1 = Sn +Xn+1, we can write

P
{

SN(t) 6 s
}
= P{X1 > t}+ ∑

n∈N
E[1{Sn6s}E[1{Xn+1>t−Sn}|σ(Sn)]].

We recall Fn, n-fold convolution of F , is the distribution function of Sn. Taking expectation of F̄(t−Sn)1{Sn6s},
we get

P
{

SN(t) 6 s
}
= F̄(t)+ ∑

n∈N

∫ s

y=0
F̄(t− y)dFn(y).

Using monotone convergence theorem to interchange integral and summation, and noticing that m(y)=∑n∈N Fn(y),
the result follows.

Remark 1. A simple proof of key lemma follows from the fact that A(t) = t−SN(t) is a regenerative process.
Then f (t) = P{A(t)> x} for x ∈ [0, t] and f (t) = 0 for x > t. Hence, we can write the corresponding kernel
function is

K(t) = P{S1 > t,A(t)> x}= P{S1 > t, t > x}= F̄(t)1{t>x}.

Therefore, it follows that

P
{

SN(t) 6 s
}
= P{A(t)> t− s}= F̄(t)1{t>t−s}+

∫ t

0
dm(y)F̄(t− y)1{t−y>t−s}.

Remark 2. Key lemma tells us that distribution of SN(t) has probability mass at 0 and density between (0, t],
that is,

Pr{SN(t) = 0}= F̄(t), dFSN(t)(y) = F̄(t− y)dm(y) 0 < y 6 t.

Remark 3. Density of SN(t) has interpretation of renewal taking place in the infinitesimal neighborhood of y,
and next inter-arrival after time t− y. To see this, we notice

dm(y) = ∑
n∈N

dFn(y) = ∑
n∈N

P{Sn ∈ (y,y+dy)}= ∑
n∈N

P{nth renewal occurs in (y,y+dy)} .

Combining interpretation of density of inter-arrival time dF(t), we get

dFSN(t)(y) = Pr{renewal occurs in (y,y+dy) and next arrival after t− y}. (1)
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2 Delayed Regenerative Process
Theorem 2.1. Let Z be a delayed regenerative process with the associated delayed renewal sequence S, the
renewal function mD, the first arrival distribution G, and the common inter-arrival duration distribution F. For
a Borel measurable set A ∈ B(R), we define the kernel functions K1(t) , P{Zt ∈ A,S1 > t},K2(t) , P{ZS1+t ∈
A, t ∈ [0,X2)}, then we have

P{Zt ∈ A}= K1(t)+
∫ t

0
dmD(y)K2(t− y). (2)

Proof. For a Borel measurable set A ∈ B(R), we can write the probability of the delayed regenerative process
taking values in this set as disjoint sum of probability of disjoint partitions of this event as

P{Zt ∈ A}= P{Zt ∈ A,S1 > t}+ ∑
n∈N

P{Zt ∈ A,N(t) = n} .

The nth segment of the joint process (ND(t),Z(t)) is ζn = (Xn,(Z(Sn−1 + t) : t ∈ [0,Xn))). From the regenerative
property, we know that the segments (ζn : n ∈ N) are independent, where (ζn : n > 2) are identically distributed.
In particular, we can write

E[E1{Zt∈A,Sn6t<Sn+1}|FSn ]|σ(Sn)] = 1{Sn6t}E[1{ZS1+t−Sn∈A,t−Sn∈[0,X2)}
∣∣ σ(Sn)] = 1{Sn6t}K2(t−Sn).

The result follows from the fact that P{Zt ∈ A,N(t) = n}= E[1{Zt∈A,Sn6t<Sn+1}|σ(Sn)].

Example 2.2 (Age process). Age process (A(t) = t−SN(t) : t > 0) for a delayed renewal process (Sn : n ∈N)
is a delayed regenerative process, since the nth segment is given by ζn = (Xn,(A(Sn−1 + t) = t : t > [0,Xn))).
For the measurable set B = [x,∞), then we can compute the kernel functions

K1(t) = P{A(t)> x,S1 > t}= 1{t>x}Ḡ(t), K2(t) = P{A(S1 + t)> x, t ∈ [0,X2)}= 1{t>x}F̄(t).

Therefore, we can write the distribution of last renewal time for the delayed renewal process as

P
{

SN(t) 6 x
}
= P{A(t)> t− x}= 1{x>0}Ḡ(t)+

∫ t

0
dmD(y)1{t−y>t−x}F̄(t− y).

Corollary 2.3 (Delayed Key Lemma). Let S : Ω→ RN
+ be a delayed renewal process with independet inter-

renewal times X : Ω→ RN
+ with first renewal time having distribution G and common distribution F for inter-

renewal times (Xn,n > 2), associated counting process ND(t), and the renewal function mD(t). Then,

P
{

SN(t) 6 s
}
= Ḡ(t)+

∫ s

0
F̄(t− y)dmD(y), t ≥ s≥ 0.

3 Blackwell Theorem
Lemma 3.1. Let F be the inter-renewal distribution such that inf{x : F(x) = 1}= ∞, then for any b > 0

sup
t
{m(t)−m(t−b)}< ∞.

Proof. Recall that m = ∑n∈N Fn and hence m∗F = m−F . This implies that m∗ (1−F) = F . Since the function
1−F is monotonically non-increasing, infs∈[0,b] F̄(s) = F̄(b). Therefore,

1 > F(t) =
∫ t

0
dm(s)F̄(t− s)>

∫ t

t−b
dm(s)F̄(t− s)> [m(t)−m(t−b)]F̄(b),

where b is chosen so that F(b)< 1. Hence, the result follows.

Theorem 3.2 (Blackwell’s Theorem). Let the inter-renewal times have distribution F, mean µ , and the associ-
ated renewal function m(t), such that inf{x : F(x) = 1}= ∞. If F is not lattice, then for all a≥ 0

lim
t→∞

m(t +a)−m(t) =
a
µ
.

If F is lattice with period d, then

lim
n→∞

m((n+1)d)−m(nd) =
d
µ
.
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Proof. We will not prove that the following limit exists for non-lattice F ,

g(a) = lim
t→∞

[m(t +a)−m(t)] (3)

However, we show that if this limit does exist, it is equal to a/µ as a consequence of elementary renewal theorem.
To this end, note that

m(t +a+b)−m(t) = m(t +a+b)−m(t +a)+m(t +a)−m(t).

Taking limits on both sides of the above equation, we conclude that g(a+b) = g(a)+g(b). The only increasing
solution of such a g is

g(a) = ca,∀a > 0,

for some positive constant c. To show c = 1
µ

, define a sequence {xn,n ∈ N} in terms of m(t) as

xn = m(n)−m(n−1), n ∈ N.

Note that ∑
n
i=1 xi = m(n) and limn∈N xn = g(1) = c, hence we have

lim
n∈N

∑
n
i=1 xi

n
= lim

n∈N

m(n)
n

(a)
= c,

where (a) follows from the fact that if a sequence {xi} converges to c, then the running average sequence an =
1
n ∑

n
i=1 xi also converges to c, as n→ ∞. Therefore, we can conclude c = 1/µ by elementary renewal theorem.
When F is lattice with period d, the limit in (3) doesn’t exist. (See the following example). However, the

theorem is true for lattice again by elementary renewal theorem. Indeed, since m(nd)
n → 1

µ
, we can define xn =

m(nd)−m((n− 1)d) and observe that ∑
n
i=1 xn = m(nd) and 1

n ∑
n
i=1 xn converges to d

µ
by elementary renewal

theorem.

Example 3.3. For a trivial lattice example where the limt→∞ m(t+a)−m(t) does not exist, consider a renewal
process with Pr{Xn = 1}= 1, that is, there is a renewal at every positive integer time instant with probability
1. Then F is lattice with d = 1. Now, for a = 0.5, and tn = n+(−1)n0.5, we see that limtn→∞ m(tn+a)−m(tn)
does not exist, and hence limt→∞ m(t +a)−m(t) does not exist.

Remark 4. In the lattice case, if the inter arrivals are strictly positive, that is, there can be no more than one renewal
at each nd, then we have that

lim
n→∞

P[renewal at nd] =
d
µ
. (4)

Corollary 3.4 (Delayed Blackwell’s Theorem). Consider a delayed renewal process with independent inter-
renewal times, with the distribution of first renewal being G with mean µG, and distribution of inter-renewal times
for n > 2 being F with mean µF and the property inf{x : F(x) = 1} = ∞. Let the associated renewal function be
mD(t) and F is not lattice, then for all a > 0

lim
t→∞

mD(t +a)−mD(t) =
a

µF
.

If F and G are lattice with period d, then

lim
n→∞

mD((n+1)d)−mD(nd) =
d

µF
.
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