Lecture-11: Key Renewal Theorem

1 Key Renewal Theorem

Theorem 1.1 (Key renewal theorem). Consider a recurrent renewal process S : Q) — ]R]I;I with renewal function
m(t), and the common mean and the distribution of i.i.d. inter-renewal times being denoted by [l and F respectively.
For any directly Riemann integrable function z € ID, we have
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ﬁfowZO)df, F is non-lattice,
%Zkez+ z2(t+kd), F is lattice with period d, t = nd.
Proposition 1.2 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We select z: Ry — IR as a simple function with value unity on
interval [0,a] for @ > 0 and zero elsewhere. That is, z(t) = Ljo(t) for any # € R.. From Proposition it follows
that z is directly Riemann integrable. Therefore, by Key Renewal Theorem, we have

Jimm(r) = m(t —a)] = .

We defer the formal proof of converse for a later stage. We observe that, from Blackwell theorem, it follows
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where in (a) we can exchange the order of limits under certain regularity conditions. O

Remark 1. Key renewal theorem is very useful in computing the limiting value of some function g(¢), probability or
expectation of an event at an arbitrary time ¢, for a renewal process. This value is computed by conditioning on the
time of last renewal prior to time ¢.

Corollary 1.3 (Delayed key renewal theorem). Consider an aperiodic and recurrent delayed renewal process S :
Q— ]R]I;I with independent inter-arrival times X : () — ]R]I;T with first inter-renewal time distribution G and common
inter-renewal time distribution F for (X, : n > 2). Let the renewal function be denoted by mp(t) and means EX; = g
and EX> = ur. For any directly Riemann integrable function z € ID and F non-lattice, we have

lim tz(t —x)dmp(x) = L/:z(t)dt.
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Remark 2. Any kernel function K (1) = P{Z, € A,X; >t} < F(t), and hence is d.R.i. from Proposition[A.3|b).

Example 1.4 (Limiting distribution of regenerative process). For a regenerative process Z over a delayed
renewal process S with finite mean i.i.d. inter-arrival times, we have K> (1) = P{Zs, 1, € A,X> >t} < F(t) for any
A € B(R), and hence the kernel function K, € ID. Applying Key Renewal Theorem to renewal function, we get
the limiting probability of the event {Z; € A} as
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fm P{Z, €A} = lim(mp« K2) (1) = - /IZOKz(t)dt.



Example 1.5 (Limiting distribution of age and excess time). For a delayed renewal process S with finite mean
independent inter-renewal times such that the distribution of first renewal time is G, and the distribution of sub-
sequent renewal times are identically F'. Denoting the associated counting process by Np and renewal function
mp, we can write the limiting probability distribution of age as F,(x) = lim,_,. P{A(t) < x}. We can write the
complementary distribution as
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Fe(x) = lim P{A() > x} = lim /0 dmp(t =y) Lz F(y) = ur /X F(y)dy.
Example 1.6 (Limiting on probability of alternating renewal process). Consider an alternating renewal pro-
cess W with random on and off time sequence Z and Y respectively, such that (Z,Y) is i.i.d. . We denote the
distribution of on and off times by non-lattice functions H and G respectively. If [EZ, and EY;, are finite, then
applying Key renewal theorem to the limiting probability of alternating process being on, we get
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A Directly Riemann Integrable

For each scalar 4 > 0 and natural number 1 € IN, we can define intervals I, (h) = [(n— 1)h,nh), such that the collection

(I,(h),n € N) partitions the positive real-line R ;. For any function z : R — R be a function bounded over finite
intervals, we can denote the infimum and supremum of z in the interval I, as

z,(h) £ inf{z(t) : t € I,(h)} Zn(h) £ sup{z(t) :t € L,(h)}.

We can define functions z,,Z; : Ry — R4 such that z, (1) £ YnenZ, (B) Ly, (1) @nd Zu(2) 2 Y eN Zu(R) 1y, () (1) for
all t € R . From the definition, we have z, < z < zj, for all & > 0. The infinite sums of infimum and supremums over
all the intervals (I,(h),n € IN) are denoted by

()i =h Y z(n), / 2(0)di=h Y z,(n).
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Remark 3. Since z;, <z <z, we observe that [;c , z,(t)dt < [icg, 2(t)dt < [icr, Zn(t)dt. If both left and right limits
exist and are equal, then the integral value f,E]R+ z(r)dt is equal to the limit.

Definition A.1 (directly Riemann integrable (d.R.i.)). A function z: R} — Ry is directly Riemann integrable
and denoted by z € D if the partial sums obtained by summing the infimum and supremum of /4, taken over intervals
obtained by partitioning the positive axis, are finite and both converge to the same limit, for all finite positive interval
lengths. That is,

lim z, (t)dt = lim Zn(t)dt.
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The limit is denoted by [;c, z(7)dr.

For a real function z : R, — IR, we can define the positive and negative parts by z*,z~ : IR, — R, such that for
allt € Ry z7(¢) £z(t) v0,and 7~ (t) = —(z(¢) AO). If both z*,z~ € D, then z € D and the limit is

~/11.%+ Z(t)dr = ./]I;+ 7 (t)dt — ./]I'{+ 2 ()dr.

Remark 4. We compare the definitions of directly Riemann integrable and Riemann integrable functions. For a finite
positive M, a function z : [0,M] — R is Riemann integrable if
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}lllir(l) A ;h(t)dt:}lgr(l)h | z,(t)dt.



In this case, the limit is the value of the integral féw z(t)dt. For a function z: Ry — R,

M
/ z(t)dt = lim | z(1)dt,
t€Ry M~ o

if the limit exists. For many functions, this limit may not exist.

Remark 5. A directly Riemann integrable function over IR} is also Riemann integrable, but the converse need
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not be true. For instance, for E,, £ [n n—+ ﬁ] for each n € IN, consider the following Riemann integrable

function z: Ry — R
We observe that z is Riemann integrable, but fte]R+ Zn(2)dt is always infinite for every i > 0.

Proposition A.2 (Necessary conditions for d.R.i.). Ifa function z: R — R is directly Riemann integrable, then z
is bounded and continuous a.e.

Proposition A.3 (Sufficient conditions for d.R.i.). A function z: Ry — Ry is directly Riemann integrable, if any of
the following conditions hold.

(a) zis monotone non-increasing, and Lebesgue integrable.

(b) zis bounded above by a directly Riemann integrable function.
(¢) z has bounded support.

(d) fteIR+ Zpdt is bounded for some h > 0.

Proposition A.4 (Tail Property). If z: Ry — R is directly Riemann integrable and has bounded integral value,
then limy_..z(1) = 0.

Corollary A.5. Any distribution F : Ry — [0, 1] with finite mean i, the complementary distribution function F is
d.R.i.

Proof. Since F' is monotonically non-increasing and its Lebesgue integration is f]R+ F(t)dt = p, the result follows
from Proposition [A3{a). O
B Chebyshev’s sum inequality

Lemma B.1. Ler f: R — R and g: R — Ry be arbitrary functions with the same monotonicity. For any random
variable X, functions f(X) and g(X) are positive and

E[f(X)g(X)] = E[f(X)]E[g(X)].

Proof. LetY be a random variable independent of X and with the same distribution. Then,

(f(X) = f(¥))(e(X) —g(¥)) 2 0.

Taking expectation on both sides the result follows. O



	Key Renewal Theorem
	Directly Riemann Integrable
	Chebyshev's sum inequality

