
Lecture-11: Key Renewal Theorem

1 Key Renewal Theorem
Theorem 1.1 (Key renewal theorem). Consider a recurrent renewal process S : Ω→ RN

+ with renewal function
m(t), and the common mean and the distribution of i.i.d. inter-renewal times being denoted by µ and F respectively.
For any directly Riemann integrable function z ∈D, we have

lim
t→∞

∫ t

0
z(t− x)dm(x) =

{
1
µ

∫
∞

0 z(t)dt, F is non-lattice,
d
µ ∑k∈Z+

z(t + kd), F is lattice with period d, t = nd.

Proposition 1.2 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We select z : R+ → R+ as a simple function with value unity on
interval [0,a] for a > 0 and zero elsewhere. That is, z(t) = 1[0,a](t) for any t ∈R+. From Proposition A.3, it follows
that z is directly Riemann integrable. Therefore, by Key Renewal Theorem, we have

lim
t→∞

[m(t)−m(t−a)] =
a
µ

.

We defer the formal proof of converse for a later stage. We observe that, from Blackwell theorem, it follows

lim
t→∞

dm(t)
dt

(a)
= lim

a→0
lim
t→∞

m(t + a)−m(t)
a

=
1
µ

.

where in (a) we can exchange the order of limits under certain regularity conditions.

Remark 1. Key renewal theorem is very useful in computing the limiting value of some function g(t), probability or
expectation of an event at an arbitrary time t, for a renewal process. This value is computed by conditioning on the
time of last renewal prior to time t.

Corollary 1.3 (Delayed key renewal theorem). Consider an aperiodic and recurrent delayed renewal process S :
Ω→RN

+ with independent inter-arrival times X : Ω→RN
+ with first inter-renewal time distribution G and common

inter-renewal time distribution F for (Xn : n > 2). Let the renewal function be denoted by mD(t) and means EX1 = µG
and EX2 = µF . For any directly Riemann integrable function z ∈D and F non-lattice, we have

lim
t→∞

∫ t

0
z(t− x)dmD(x) =

1
µF

∫
∞

0
z(t)dt.

Remark 2. Any kernel function K(t) = P{Zt ∈ A,X1 > t}6 F̄(t), and hence is d.R.i. from Proposition A.3(b).

Example 1.4 (Limiting distribution of regenerative process). For a regenerative process Z over a delayed
renewal process S with finite mean i.i.d. inter-arrival times, we have K2(t) = P{ZS1+t ∈ A,X2 > t}6 F̄(t) for any
A ∈ B(R), and hence the kernel function K2 ∈D. Applying Key Renewal Theorem to renewal function, we get
the limiting probability of the event {Zt ∈ A} as

lim
t→∞

P{Zt ∈ A}= lim
t→∞

(mD ∗K2)(t) =
1

µF

∫ x

t=0
K2(t)dt.
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Example 1.5 (Limiting distribution of age and excess time). For a delayed renewal process S with finite mean
independent inter-renewal times such that the distribution of first renewal time is G, and the distribution of sub-
sequent renewal times are identically F . Denoting the associated counting process by ND and renewal function
mD, we can write the limiting probability distribution of age as Fe(x) , limt→∞ P{A(t) 6 x}. We can write the
complementary distribution as

F̄e(x) = lim
t→∞

P{A(t) > x}= lim
t→∞

∫ t

0
dmD(t− y)1{y>x}F̄(y) =

1
µF

∫
∞

x
F̄(y)dy.

Example 1.6 (Limiting on probability of alternating renewal process). Consider an alternating renewal pro-
cess W with random on and off time sequence Z and Y respectively, such that (Z,Y ) is i.i.d. . We denote the
distribution of on and off times by non-lattice functions H and G respectively. If EZn and EYn are finite, then
applying Key renewal theorem to the limiting probability of alternating process being on, we get

lim
t→∞

P(t) = lim
t→∞

(m∗ H̄)(t) =
EZn

EZn +EYn
.

A Directly Riemann Integrable

For each scalar h> 0 and natural number n∈N, we can define intervals In(h), [(n−1)h,nh), such that the collection
(In(h),n ∈N) partitions the positive real-line R+. For any function z : R+→R+ be a function bounded over finite
intervals, we can denote the infimum and supremum of z in the interval In as

zn(h) , inf{z(t) : t ∈ In(h)} zn(h) , sup{z(t) : t ∈ In(h)} .

We can define functions zh,zh : R+ → R+ such that zh(t) , ∑n∈N zn(h)1In(h)(t) and zh(t) , ∑n∈N zn(h)1In(h)(t) for
all t ∈R+. From the definition, we have zh 6 z 6 zh for all h > 0. The infinite sums of infimum and supremums over
all the intervals (In(h),n ∈N) are denoted by∫

t∈R+

zh(t)dt = h ∑
n∈N

zh(n),
∫

t∈R+

zh(t)dt = h ∑
n∈N

zh(n).

Remark 3. Since zh 6 z 6 zh, we observe that
∫

t∈R+
zh(t)dt 6

∫
t∈R+

z(t)dt 6
∫

t∈R+
zh(t)dt. If both left and right limits

exist and are equal, then the integral value
∫

t∈R+
z(t)dt is equal to the limit.

Definition A.1 (directly Riemann integrable (d.R.i.)). A function z : R+ 7→ R+ is directly Riemann integrable
and denoted by z ∈D if the partial sums obtained by summing the infimum and supremum of h, taken over intervals
obtained by partitioning the positive axis, are finite and both converge to the same limit, for all finite positive interval
lengths. That is,

lim
h→0

∫
t∈R+

zh(t)dt = lim
h→0

∫
t∈R+

zh(t)dt.

The limit is denoted by
∫

t∈R+
z(t)dt.

For a real function z : R+→R, we can define the positive and negative parts by z+,z− : R+→R+ such that for
all t ∈R+ z+(t) , z(t)∨0, and z−(t) ,−(z(t)∧0). If both z+,z− ∈D, then z ∈D and the limit is∫

R+

z(t)dt ,
∫

R+

z+(t)dt−
∫

R+

z−(t)dt.

Remark 4. We compare the definitions of directly Riemann integrable and Riemann integrable functions. For a finite
positive M, a function z : [0,M]→R is Riemann integrable if

lim
h→0

∫ M

0
zh(t)dt = lim

h→0
h
∫ M

0
zh(t)dt.
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In this case, the limit is the value of the integral
∫ M

0 z(t)dt. For a function z : R+→R,∫
t∈R+

z(t)dt = lim
M→∞

∫ M

0
z(t)dt,

if the limit exists. For many functions, this limit may not exist.

Remark 5. A directly Riemann integrable function over R+ is also Riemann integrable, but the converse need
not be true. For instance, for En ,

[
n− 1

2n2 , n+ 1
2n2

]
for each n ∈N, consider the following Riemann integrable

function z : R+→R+

z(t) = ∑
n∈N

1En(t), t ∈R+.

We observe that z is Riemann integrable, but
∫

t∈R+
zh(t)dt is always infinite for every h > 0.

Proposition A.2 (Necessary conditions for d.R.i.). If a function z : R+→R+ is directly Riemann integrable, then z
is bounded and continuous a.e.

Proposition A.3 (Sufficient conditions for d.R.i.). A function z : R+→R+ is directly Riemann integrable, if any of
the following conditions hold.

(a) z is monotone non-increasing, and Lebesgue integrable.

(b) z is bounded above by a directly Riemann integrable function.

(c) z has bounded support.

(d)
∫

t∈R+
zhdt is bounded for some h > 0.

Proposition A.4 (Tail Property). If z : R+ → R+ is directly Riemann integrable and has bounded integral value,
then limt→∞ z(t) = 0.

Corollary A.5. Any distribution F : R+ → [0,1] with finite mean µ , the complementary distribution function F̄ is
d.R.i.

Proof. Since F̄ is monotonically non-increasing and its Lebesgue integration is
∫

R+
F̄(t)dt = µ , the result follows

from Proposition A.3(a).

B Chebyshev’s sum inequality
Lemma B.1. Let f : R→R+ and g : R→R+ be arbitrary functions with the same monotonicity. For any random
variable X, functions f (X) and g(X) are positive and

E[ f (X)g(X)] ≥E[ f (X)]E[g(X)].

Proof. Let Y be a random variable independent of X and with the same distribution. Then,

( f (X)− f (Y ))(g(X)−g(Y ))≥ 0.

Taking expectation on both sides the result follows.
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