
Lecture-12: Applications of Key Renewal Theorem

1 Age-dependent branching process
Suppose a population where each organism lives for an i.i.d.random time period of T units with common distri-
bution function F . Just before dying, each organism produces a number of offsprings N, an i.i.d.discrete random
variable with common distribution P. Let X(t) denote the number of organisms alive at time t. The stochastic pro-
cess X : Ω→Z

R+
+ is called an age-dependent branching process. We are interested in computing M(t) = EX(t)

when m = E[N] = ∑ j∈N jPj. This is a popular model in biology for population growth of various organisms.

Theorem 1.1. If X(0) = 1, m > 1 and F is non lattice, then

lim
t→∞

e−αtm(t) =
n−1

n2α
∫

∞

0 xe−αxdF(x)
,

where α > 0 is the unique solution to the equation n
∫

∞

0 e−αxdF(x) = 1.

Proof. Recall that for the delayed renewal function mD(t) , ∑n∈N(H ∗G(n−1))(t) associated with delayed re-
newal time distribution H(t) = 1− e−αt F̄(t) and inter-renewal distribution G(t) = n

∫ t
0 e−αudF(u), where α is

the unique solution of

1 = n
∫

∞

0
e−αtdF(t),

we can write the mean m(t) = EX(t) as the solution to delayed renewal equation as

m(t)e−αt = e−αt F̄(t)+
∫ t

0
e−α(t−u)F̄(t−u)dmD(u).

Since H̄(t) = e−αt F̄(t) is non-negative, monotone non-increasing and integrable, it is directly Riemann integrable.
Hence, we can apply key renewal theorem to the limiting value of solution to renewal equation to obtain

lim
t→∞

m(t)e−αt =
1

µG

∫
∞

0
e−αt F̄(t)dt =

∫
∞

0 e−αt F̄(t)dt
n
∫

∞

0 te−αtdF(t)
.

Result follows from the integration by parts,∫
∞

0
e−αt F̄(t)dt =

1
α
− 1

α

∫
∞

0
e−αtdF(t) =

1
α

(
1− 1

n

)
.

2 Equilibrium renewal process
Recall that the limiting distribution of age for a renewal process is given by the equilibrium distribution Fe :
R+→ [0,1] defined for an inter-renewal time distribution F as Fe(x) = 1

µF

∫ x
0 F̄(y)dy for all x > 0.

Lemma 2.1. The moment generating function of Fe(x) is F̃e(s) =
1−F̃(s)

sµ
.

Proof. By definition, F̃e(s) = E
[
e−sX

]
, where X is a random variable with distribution function Fe(x). We use

integration by parts, to write

F̃e(s) =
∫

∞

0
e−sxdFe(x) =

1
sµ
− 1

sµ

∫
∞

0
e−sxdF(x) =

1
sµ

(1− F̃(s)).

1



A delayed renewal process with the initial arrival distribution G = Fe is called the equilibrium renewal
process. Observe that Fe is the limiting distribution of the age and the excess time for the renewal process with
common inter-renewal distribution F . Hence, if we start observing a renewal process at some arbitrarily large time
t, then the observed renewal process is the equilibrium renewal process. This delayed renewal process exhibits
stationary properties. That is, the limiting behaviors are exhibited for all times.

Theorem 2.2 (renewal function). The renewal function me(t) for the equilibrium renewal process is linear for
all times. That is, me(t) = t

µ
.

Proof. We know that the Laplace transform of renewal function me(t) is given by

m̃e(s) =
G̃(s)

1− F̃(s)
=

F̃e(s)
1− F̃(s)

=
1

sµ
. (1)

Further, we know that the Laplace transform of function t/µ is given by Lt/µ (s) = 1
µ

∫
∞

0 e−sxdx = 1
sµ

. Since
moment generating function is a one-to-one map, me(t) = t

µ
is the unique renewal function.

Theorem 2.3 (excess time). The distribution of excess time Ye(t) for the equilibrium renewal process is stationary.
That is,

P{Ye(t) 6 x}= Fe(x), t > 0. (2)

Proof. Since the excess time Ye(t) is regenerative process and dme(t) = 1/µ , we can write

P{Ye(t) > x}= F̄e(t + x)+
1
µ

∫ t

0
F̄(t + x−u)du = F̄e(t + x)+

1
µ

∫ t+x

x
F̄(y)dy = F̄e(x). (3)

When we start observing the counting process at time s, the observed renewal process is delayed renewal
process with initial distribution Ye at time s being identical to the distribution Fe. Hence, the number of renewals
Ne(t + s)−Ne(s) has the same distribution as Ne(t) in duration t. That is, the distribution of counting process is
shift invariant.

Theorem 2.4 (stationary increments). The counting process Ne : Ω→Z
R+
+ for the equilibrium renewal process

has stationary increments.

Proof. The Laplace transform of Ne(t + s)−Ne(s) is identical to Laplace transform of Ne(t). Result holds from
the uniqueness of inverse of Laplace transforms.

Example 2.5 (Poisson process). Consider the case, when inter-renewal time distribution F for a delay re-
newal process is exponential with rate λ . Here, one would expect the equilibrium distribution Fe = F , since
Poisson process has stationary and independent increments. We observe that

Fe(x) =
1
µ

∫ x

0
F̄(y)dy = λ

∫ x

0
e−λydy = 1− e−λx = F(x).

We see that Fe is also distributed exponentially with rate λ . Indeed, this is a Poisson process with rate λ .
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