Lecture-13: Renewal Reward Processes

1 Renewal reward process

Consider a counting process $(N(t): t \geqslant 0)$ associated with iid inter renewal times $\left(X_{n}: n \in \mathbb{N}\right)$ having common distribution F. At the end of nth renewal interval, a random reward R_{n} is earned for each $n \in \mathbb{N}$. Let $\left(X_{n}, R_{n}\right)$ be iid with the reward R_{n} earned in nth renewal possibly dependent on the duration X_{n}. Then the reward process $(R(t): t \geqslant 0)$ consists of accumulated reward earned by time t as $R(t)=\sum_{i=1}^{N(t)} R_{i}$.

Theorem 1.1 (renewal reward). Let the mean of absolute value of reward $\mathbb{E}\left|R_{n}\right|$, and mean of absolute value of renewal duration $\mathbb{E}\left|X_{n}\right|$ be finite. Then the empirical average of reward converges, almost surely and in mean, i.e.

$$
\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E} R_{n}}{\mathbb{E} X_{n}} \text { a.s. }, \quad \lim _{t \rightarrow \infty} \frac{\mathbb{E} R(t)}{t}=\frac{\mathbb{E} R}{\mathbb{E} X}
$$

Proof. We can write the rate of accumulated reward as $\frac{R(t)}{t}=\left(\frac{R(t)}{N(t)}\right)\left(\frac{N(t)}{t}\right)$. From the strong law of large numbers and the fact that $\lim _{t \rightarrow \infty} N(t)=\infty$ almost surely, we obtain $\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{N(t)} R_{i}}{N(t)}=\mathbb{E} R_{1}$. From the strong law for counting processes we have $\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mathbb{E} X_{1}}$ almost surely.

Since $N(t)+1$ is a stopping time for the sequence $\left\{\left(X_{1}, R_{1}\right),\left(X_{2}, R_{2}\right), \ldots\right\}$, by Wald's lemma,

$$
\mathbb{E} R(t)=\mathbb{E}\left[\sum_{i=1}^{N(t)} R_{i}\right]=\mathbb{E}\left[\sum_{i=1}^{N(t)+1} R_{i}\right]-\mathbb{E} R_{N(t)+1}=(m(t)+1) \mathbb{E} R_{1}-\mathbb{E} R_{N(t)+1}
$$

Defining $g(t) \triangleq \mathbb{E} R_{N(t)+1}$, using elementary renewal theorem, it suffices to show that $\lim _{t \rightarrow \infty} g(t) / t=0$. Observe that $R_{N(t)+1}$ is a regenerative process with the regenerative sequence being the renewal instants. We can write the kernel function as

$$
K(t) \triangleq \mathbb{E}\left[R_{N(t)+1} \mathbb{1}_{\left\{X_{1}>t\right\}}\right]=\mathbb{E}\left[R_{1} \mathbb{1}_{\left\{X_{1}>t\right\}}\right] \leqslant \mathbb{E}\left|R_{1}\right| .
$$

Using the solution to renewal function, we can write $g=(1+m) * K$ in terms of renewal function m and kernel function K. From finiteness of $\mathbb{E}|R|$, it follows that $\lim _{t \rightarrow \infty} K(t)=0$, and we can choose T such that $|K(u)| \leq \varepsilon$ for all $u \geq T$. Hence, for all $t \geq T$, we have

$$
\begin{aligned}
\frac{|g(t)|}{t} & \leq \frac{|K(t)|}{t}+\int_{0}^{t-T} \frac{|K(t-u)|}{t} d m(u)+\int_{t-T}^{t} \frac{|K(t-u)|}{t} d m(u) \\
& \leq \frac{\varepsilon}{t}+\frac{\varepsilon m(t-T)}{t}+\mathbb{E}\left|R_{1}\right| \frac{(m(t)-m(t-T))}{t} .
\end{aligned}
$$

Taking limits and applying elementary renewal and Blackwell's theorem, we get

$$
\limsup _{t \rightarrow \infty} \frac{|g(t)|}{t} \leq \frac{\varepsilon}{\mathbb{E} X}
$$

The result follows since $\varepsilon>0$ was arbitrary.
Lemma 1.2. Reward $R_{N(t)+1}$ at the next renewal has different distribution than R_{1}.
Proof. Notice that $R_{N(t)+1}$ is related to $X_{N(t)+1}$ which is the length of the renewal interval containing the point t. We have seen that larger renewal intervals have a greater chance of containing t. That is, $X_{N(t)+1}$ tends to be larger than a ordinary renewal interval. Since $R_{N(t)+1}$ is a regenerative process, we can formally write its tail probability as

$$
f(t)=P\left\{R_{N(t)+1}>x\right\}=K(t)+(m * K)(t),
$$

where in terms of the distribution functions F, H for inter-renewal times and rewards we can write the the kernel

$$
K(t)=P\left\{R_{N(t)+1}>x, X_{1}>t\right\}=P\left\{R_{1}>x, X_{1}>t\right\} \leqslant \bar{F}(t) .
$$

It follows that $f(t) \leqslant \bar{F}(t)+(m * \bar{F})(t)=1$.
Lemma 1.3. Renewal reward theorem applies to a reward process $R(t)$ that accrues reward continuously over a renewal duration. The total reward in a renewal duration X_{n} remains R_{n} as before, with the sequence $\left(\left(X_{n}, R_{n}\right)\right.$: $n \in \mathbb{N}$) being iid.
Proof. Let the process $R(t)$ denote the accumulated reward till time t, when the reward accrual is continuous in time. Then, it follows that

$$
\frac{\sum_{n=1}^{N(t)} R_{n}}{t} \leq \frac{R(t)}{t} \leq \frac{\sum_{n=1}^{N(t)+1} R_{n}}{t}
$$

Result follows from application of strong law of large numbers.

1.1 Limiting empirical average of age and excess times

To determine the average value of the age of a renewal process, consider the following gradual reward process. We assume the reward rate to be equal to the age of the process at any time t, and

$$
R(t)=\int_{0}^{t} A(u) d u
$$

Observe that age is a linear increasing function of time in any renewal duration. In nth renewal duration, it increases from 0 to X_{n}, and the total reward $R_{n}=X_{n}^{2} / 2$. Hence, we obtain from the renewal reward theorem

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} A(u) d u=\frac{\mathbb{E} R_{n}}{\mathbb{E} X_{n}}=\frac{\mathbb{E} X^{2}}{2 \mathbb{E} X} .
$$

Example 1.4. Since the accumulated excess time during one renewal cycle is $\int_{0}^{X_{n}}\left(X_{n}-t\right) d t$, the limiting empirical average of excess time $Y(t)=t-S_{N(t)}$ can be found using the renewal reward theorem is

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} Y(u) d u=\frac{\mathbb{E}\left[X^{2}\right]}{2 \mathbb{E}[X]} .
$$

Example 1.5. The limiting average of current renewal interval $X_{N(t)}=A(t)+Y(t)=S_{N(t)+1}-S_{N(t)}$ can be computed directly as the sum of two limiting averages, or from the application of renewal reward theorem with accrued reward in one renewal interval being $\int_{0}^{X_{n}} X_{n} d t=X_{n}^{2}$, to get

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X_{N(u)+1} d u=\frac{\mathbb{E}\left[X^{2}\right]}{\mathbb{E}[X]} .
$$

We see that this limit is always greater than $\mathbb{E}[X]$, except when X is constant. Such a result was to be expected in view of the inspection paradox, since we can show that $\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{N(t)+1}\right]=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X_{N(u)+1} d u$.
Example 1.6. It can be shown, under certain regularity conditions, that

$$
\lim _{t \rightarrow \infty} \mathbb{E} R_{N(t)+1}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} R_{N(u)+1} d u=\frac{\mathbb{E}\left[R_{1} X_{1}\right]}{\mathbb{E}\left[X_{1}\right]}
$$

If reward is a monotonically increasing function of renewal interval, then we get that $\lim _{t \rightarrow \infty} \mathbb{E} R_{N(t)+1} \geqslant \mathbb{E} R_{1}$ from Chebyshev's inequality.

1.2 Stationary probability and empirical average

Theorem 1.7. For an alternative renewal process $W: \Omega \rightarrow\{0,1\}^{\mathbb{R}_{+}}$the stationary probability of being on is same as the limiting average time spent in the on duration if the renewal duration has finite mean. That is,

$$
\lim _{t \rightarrow \infty} P\{W(t)=1\}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} W(u) d u
$$

Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate reward in one renewal duration X_{n} is the on time Z_{n} in that duration.

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} W(u) d u=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E} Z_{n}}{\mathbb{E} X_{n}}=\lim _{t \rightarrow \infty} P(\text { on at time } t) .
$$

A Chebyshev's sum inequality

Lemma A.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$and $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$be arbitrary functions with the same monotonicity. For any random variable X, functions $f(X)$ and $g(X)$ are positive and

$$
\mathbb{E}[f(X) g(X)] \geq \mathbb{E}[f(X)] \mathbb{E}[g(X)]
$$

Proof. Let Y be a random variable independent of X and with the same distribution. Then,

$$
(f(X)-f(Y))(g(X)-g(Y)) \geq 0 .
$$

Taking expectation on both sides the result follows.

