Lecture-13: Renewal Reward Processes

1 Renewal reward process

Consider a counting process (N(f) : r > 0) associated with iid inter renewal times (X, : n € IN) having common
distribution F. At the end of nth renewal interval, a random reward R, is earned for each n € IN. Let (X,,,R,) be
iid with the reward R, earned in nth renewal possibly dependent on the duration X,,. Then the reward process

(R(t) : t > 0) consists of accumulated reward earned by time 7 as R(r) = Zﬁvz([l) R;.
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renewal duration E|X,| be finite. Then the empirical average of reward converges, almost surely and in mean, i.e.
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Proof. We can write the rate of accumulated reward as @ = (% )( @) From the strong law of large numbers
N(r)

1\7&)& = [ER;. From the strong law for counting
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Since N(t) 4 1 is a stopping time for the sequence {(X1,R;),(X2,Rz),...}, by Wald’s lemma,
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Defining g(t) = ERy(,)1, using elementary renewal theorem, it suffices to show that lim; .. g() /¢ = 0. Observe
that Ry ;)1 is a regenerative process with the regenerative sequence being the renewal instants. We can write the
kernel function as

K(1) 2 E[Ry()411ix,53] = B[R Ly, 5] <E|Ri|.

Using the solution to renewal function, we can write g = (1 +m) * K in terms of renewal function m and kernel
, it follows that lim,_,.. K (t) = 0, and we can choose T such that |K(u)| < €
for all u > T. Hence, for all t > T, we have

|g(tt)| < \K _|_/f T|Kt—u +/ K(t—u) dm(u)
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Taking limits and applying elementary renewal and Blackwell’s theorem, we get
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The result follows since € > 0 was arbitrary. O

Lemma 1.2. Reward Ry ;) at the next renewal has different distribution than R;.

Proof. Notice that Ry ;)1 is related to Xy ;) which is the length of the renewal interval containing the point ¢.
We have seen that larger renewal intervals have a greater chance of containing 7. That is, Xy, | tends to be larger
than a ordinary renewal interval. Since Ry ;)1 is a regenerative process, we can formally write its tail probability
as

f() = P{Ry(t)11 > x} = K(1) + (m+ K) (1),

where in terms of the distribution functions F, H for inter-renewal times and rewards we can write the the kernel
K(I) = P{RN(t)+1 > x, X > l} = P{Rl > x, X > l‘} < F(t)
It follows that f(1) < F(t) + (m=F)(¢) = 1. O

Lemma 1.3. Renewal reward theorem applies to a reward process R(t) that accrues reward continuously over a
renewal duration. The total reward in a renewal duration X, remains R,, as before, with the sequence((Xn,Rn) :

n € IN) being iid.

Proof. Let the process R(r) denote the accumulated reward till time 7, when the reward accrual is continuous in
time. Then, it follows that
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Result follows from application of strong law of large numbers. O

1.1 Limiting empirical average of age and excess times

To determine the average value of the age of a renewal process, consider the following gradual reward process.
We assume the reward rate to be equal to the age of the process at any time ¢, and

R(t) = /0 " Au)du,

Observe that age is a linear increasing function of time in any renewal duration. In nth renewal duration, it
increases from O to X,,, and the total reward R,, = X”2 /2. Hence, we obtain from the renewal reward theorem
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Example 1.4. Since the accumulated excess time during one renewal cycle is [ (X, —1)dt, the limiting
empirical average of excess time Y (f) =1 — Sn(r) can be found using the renewal reward theorem is
1t E[x?]

lim— [ Y(u)du= .

fim = J, Y= Spm
Example 1.5. The limiting average of current renewal interval Xy () = A(t) +Y (t) = Sy()41 — Sy(;) can be
computed directly as the sum of two limiting averages, or from the application of renewal reward theorem
with accrued reward in one renewal interval being fé‘” X,dt = X2, to get
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We see that this limit is always greater than IE[X], except when X is constant. Such a result was to be expected
in view of the inspection paradox, since we can show that limHm]E[XN(,) 1) = limy e % fé Xy (u) 4 1du.

Example 1.6. It can be shown, under certain regularity conditions, that
. .1 E[R;X]
SRy = fim [ Ry ndu= EMX]

If reward is a monotonically increasing function of renewal interval, then we get that limy e ERy(;) 1 = ER;
from Chebyshev’s inequality.



1.2 Stationary probability and empirical average

Theorem 1.7. For an alternative renewal process W : Q) — {0, 1}]R+ the stationary probability of being on is
same as the limiting average time spent in the on duration if the renewal duration has finite mean. That is,

l t
lim P t)=1}=1lim—- [ W(u)du.
lim P{W (1) = 1} = lim - | W (u)du
Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate reward in one
renewal duration X,, is the on time Z, in that duration.
! R(t) [EZ,

1 : . .
lim i W(u)du = lim T Ex, - th_)rgP(on at time 7).

A Chebyshev’s sum inequality

Lemma A.l. Let f: R — Ry and g : R — IRy be arbitrary functions with the same monotonicity. For any
random variable X, functions f(X) and g(X) are positive and

E[f(X)g(X)] = E[f(X)]E[g(X)].

Proof. LetY be a random variable independent of X and with the same distribution. Then,

(f(X)=f(¥))(8(X) —g(¥)) > 0.

Taking expectation on both sides the result follows. O
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