
Lecture-13: Renewal Reward Processes

1 Renewal reward process
Consider a counting process (N(t) : t > 0) associated with iid inter renewal times (Xn : n ∈N) having common
distribution F . At the end of nth renewal interval, a random reward Rn is earned for each n ∈N. Let (Xn,Rn) be
iid with the reward Rn earned in nth renewal possibly dependent on the duration Xn. Then the reward process
(R(t) : t > 0) consists of accumulated reward earned by time t as R(t) = ∑

N(t)
i=1 Ri.
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Theorem 1.1 (renewal reward). Let the mean of absolute value of reward E|Rn|, and mean of absolute value of
renewal duration E|Xn| be finite. Then the empirical average of reward converges, almost surely and in mean, i.e.

lim
t→∞

R(t)
t

=
ERn

EXn
a.s. , lim

t→∞

ER(t)
t

=
ER
EX

.

Proof. We can write the rate of accumulated reward as R(t)
t = ( R(t)

N(t) )(
N(t)

t ). From the strong law of large numbers

and the fact that limt→∞ N(t) =∞ almost surely, we obtain limt→∞

∑
N(t)
i=1 Ri
N(t) =ER1. From the strong law for counting

processes we have limt→∞
N(t)

t = 1
EX1

almost surely.
Since N(t)+ 1 is a stopping time for the sequence {(X1,R1), (X2,R2), . . .}, by Wald’s lemma,

ER(t) = E

[
N(t)

∑
i=1

Ri

]
= E

[
N(t)+1

∑
i=1

Ri

]
−ERN(t)+1 = (m(t)+ 1)ER1−ERN(t)+1.

Defining g(t), ERN(t)+1, using elementary renewal theorem, it suffices to show that limt→∞ g(t)/t = 0. Observe
that RN(t)+1 is a regenerative process with the regenerative sequence being the renewal instants. We can write the
kernel function as

K(t) , E[RN(t)+11{X1>t}] = E[R11{X1>t}] 6 E |R1| .

Using the solution to renewal function, we can write g = (1+m) ∗K in terms of renewal function m and kernel
function K. From finiteness of E|R|, it follows that limt→∞ K(t) = 0, and we can choose T such that |K(u)| ≤ ε

for all u≥ T . Hence, for all t ≥ T , we have

|g(t)|
t
≤ |K(t)|

t
+

∫ t−T

0

|K(t−u)|
t

dm(u)+
∫ t

t−T

|K(t−u)|
t

dm(u)

≤ ε

t
+

εm(t−T )
t

+E|R1|
(m(t)−m(t−T ))

t
.
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Taking limits and applying elementary renewal and Blackwell’s theorem, we get

lim sup
t→∞

|g(t)|
t
≤ ε

EX
.

The result follows since ε > 0 was arbitrary.

Lemma 1.2. Reward RN(t)+1 at the next renewal has different distribution than R1.

Proof. Notice that RN(t)+1 is related to XN(t)+1 which is the length of the renewal interval containing the point t.
We have seen that larger renewal intervals have a greater chance of containing t. That is, XN(t)+1 tends to be larger
than a ordinary renewal interval. Since RN(t)+1 is a regenerative process, we can formally write its tail probability
as

f (t) = P{RN(t)+1 > x}= K(t)+ (m∗K)(t),

where in terms of the distribution functions F ,H for inter-renewal times and rewards we can write the the kernel

K(t) = P{RN(t)+1 > x,X1 > t}= P{R1 > x,X1 > t}6 F̄(t).

It follows that f (t) 6 F̄(t)+ (m∗ F̄)(t) = 1.

Lemma 1.3. Renewal reward theorem applies to a reward process R(t) that accrues reward continuously over a
renewal duration. The total reward in a renewal duration Xn remains Rn as before, with the sequence((Xn,Rn) :
n ∈N) being iid.

Proof. Let the process R(t) denote the accumulated reward till time t, when the reward accrual is continuous in
time. Then, it follows that

∑
N(t)
n=1 Rn

t
≤ R(t)

t
≤ ∑

N(t)+1
n=1 Rn

t
.

Result follows from application of strong law of large numbers.

1.1 Limiting empirical average of age and excess times
To determine the average value of the age of a renewal process, consider the following gradual reward process.
We assume the reward rate to be equal to the age of the process at any time t, and

R(t) =
∫ t

0
A(u)du.

Observe that age is a linear increasing function of time in any renewal duration. In nth renewal duration, it
increases from 0 to Xn, and the total reward Rn = X2

n /2. Hence, we obtain from the renewal reward theorem

lim
t→∞

1
t

∫ t

0
A(u)du =

ERn

EXn
=

EX2

2EX
.

Example 1.4. Since the accumulated excess time during one renewal cycle is
∫ Xn

0 (Xn− t)dt, the limiting
empirical average of excess time Y (t) = t−SN(t) can be found using the renewal reward theorem is

lim
t→∞

1
t

∫ t

0
Y (u)du =

E[X2]

2E[X ]
.

Example 1.5. The limiting average of current renewal interval XN(t) = A(t)+Y (t) = SN(t)+1−SN(t) can be
computed directly as the sum of two limiting averages, or from the application of renewal reward theorem
with accrued reward in one renewal interval being

∫ Xn
0 Xndt = X2

n , to get

lim
t→∞

1
t

∫ t

0
XN(u)+1du =

E[X2]

E[X ]
.

We see that this limit is always greater than E[X ], except when X is constant. Such a result was to be expected
in view of the inspection paradox, since we can show that limt→∞ E[XN(t)+1] = limt→∞

1
t
∫ t

0 XN(u)+1du.

Example 1.6. It can be shown, under certain regularity conditions, that

lim
t→∞

ERN(t)+1 = lim
t→∞

1
t

∫ t

0
RN(u)+1du =

E[R1X1]

E[X1]
.

If reward is a monotonically increasing function of renewal interval, then we get that limt→∞ ERN(t)+1 > ER1
from Chebyshev’s inequality.
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1.2 Stationary probability and empirical average

Theorem 1.7. For an alternative renewal process W : Ω→ {0,1}R+ the stationary probability of being on is
same as the limiting average time spent in the on duration if the renewal duration has finite mean. That is,

lim
t→∞

P{W (t) = 1}= lim
t→∞

1
t

∫ t

0
W (u)du.

Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate reward in one
renewal duration Xn is the on time Zn in that duration.

lim
t→∞

1
t

∫ t

0
W (u)du = lim

t→∞

R(t)
t

=
EZn

EXn
= lim

t→∞
P(on at time t).

A Chebyshev’s sum inequality
Lemma A.1. Let f : R→ R+ and g : R→ R+ be arbitrary functions with the same monotonicity. For any
random variable X, functions f (X) and g(X) are positive and

E[ f (X)g(X)] ≥E[ f (X)]E[g(X)].

Proof. Let Y be a random variable independent of X and with the same distribution. Then,

( f (X)− f (Y ))(g(X)−g(Y ))≥ 0.

Taking expectation on both sides the result follows.
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