Lecture-15: Equilibrium Distribution

1 Invariant distribution

Make it consistent.
Invariant is 7 = 7P, and stationary is 7(y) = lim,—e P {X,, = y}.

Definition 1.1. For a time-homogeneous Markov chain X : Q) — X“Z+ with transition matrix P, a distribution 7 on
the state space X is called stationary if it is a left eigenvector of the probability transition matrix P with eigenvalue
unity, or

T =7nP.

Remark 1. Recall that v(n) = (vi(n) = P{X, = x} : x € X) denotes the probability distribution of the Markov
chain X being in one of the states at step n € IN. Then, if v(0) = 7, then v(n) = v(0)P" = 7 for all time-steps
neIN.

Example 1.2 (Simple random walk on a graph). Let G = (V,E) be a finite undirected graph, i.e. if
(x,y) € E then (y,x) € E. Then, a simple random walk on this graph is a Markov chain with state space V
and transition matrix P: V x V — [0, 1] where p,, = Kl(x)]l {(xy)eE}- We observe that vector (deg(x) : x € X)
is a left eigenvector of the transition matrix P with unit eigenvalue. Indeed we can very that

Z deg(x)ny = Z ]l{(x,y)GE} = deg(y).
xeX xeX

Since ¥ e deg(x) = 2|E|, it follows that 77 : X — [0, 1] defined by 7, = d;‘ggf) for each x € V, is the equilib-
rium distribution of this simple random walk.

What would be the equilibrium distribution for the directed graph?

1.1 Hitting and return times

Definition 1.3. For a homogeneous Markov chain X : Q) — X%+ we can define first hitting time to state x € X,
as

7 Zinf{n e N: X, = x}.
If Xo = x, then 7" is called the first return time to state x.

Lemma 1.4. For an irreducible and aperiodic Markov chain X : Q — X%+ on finite state space X, we have
.7, < e for all states x,y € X.

Proof. From the definition of irreducibility, for each pair of states z,w € X, we have a positive integer n,, € IN
such that pzi)’ > €&,, > 0. Since the state space X is finite, We define

e£ inf &, >0, r£ sup n,, € N.
weX weX

Hence, there exists a positive integer » € IN and a real € > 0 such that p§;’2 > ¢ for some n < r and all states
zw € X. 1t follows that PU,c1, {X, =y} > € or P,{t;7 > r} <1 — g for any initial condition Xp = z € X.

Therefore, we can write for k € IN

PAtS >kr} =P {1 > (k=1)r} P({t] > kr} |{7] > (k—1)r.Xo =x}) < (1 —€)P{1] > (k—1)r}.



By induction, we have P, {7;" > kr} < (1—¢€)*. Since P, {7;" > n} is decreasing in n, we can write
r—1
IE"T; = Z ZPx{T; >kr+i} < Z rPx{T; > kr} < r < oo,
keZ i=0 keZ . €
O]

Corollary 1.5. For an irreducible and aperiodic Markov chain X : Q0 — X%+ on finite state space X, we have
P {1 <o} =1 forall states x,y € X.

Proof. This follows from the fact that ‘L'j is a positive random variable with finite mean for all states y € X and
any initial state x € X. O

Was periodicity really needed in Lemma 1.4 and Corollary 1.5?

1.2 Existence of stationary distribution

Proposition 1.6. Consider an irreducible and aperiodic homogeneous DTMC X : Q) — X%+ with transition matrix
P and starting from initial state Xy = x. Let the positive vector &, : X — [0, 1] defined as

T+

7e(y) = Ex Z Ly, =y} = Ex Z ]l{n<r+}]l{xn—y}’ yeX.

Then fiy = AP if P {7} <o} =1, and w2

Ty
E,t
+
Proof. We will first show that 7, is a distribution on state space X. We can write 7, (y) = [E, ):Zx: 1 Lix,=y < E T
for all states y € X. If E,7," < oo, then 7, (y) < oo for each y € X. Further, we have

Z 7y Z Z ]]'{Xn =y} = Z I{Xnex} (x) = 1.
yeX yeX n=

Since 7ix(y) > 0, it follows that —
We next show that 7 is an 1nvar1ant distribution of DTMC X. Using the monotone convergence theorem, we

can write
Y 2wpe:= Y, Y P{tS >nX,=w}PR,{X1 =2}
weX nelNweX

Let 7," be an almost surely finite stopping time for Xy = x. We first focus on the term w = x. We see that

{X —xT n} {T n}

Hence, from the strong Markov property, we have P {X, = x,X,41 = 2,7} > n} = P {1}’ =n} px.. Summing
over all n € IN, we get

Z Px{Xn =X, Xn+1 :ZvT;L 2”} = Pxz Z Px{T;r :n} = Pxz-
nelN nelN

We next focus on the terms w # x, such that {Xn =w, ‘L';' > n} = {Xn =w, T;’ >n+ 1}. Hence, from the
Markov property of X, we can write

PAT 2n+1.X, =w.Xop1 =2} =P {5 >nX,=w}P({Xs1 =2} |{X, = >nXo=x})
= PX{TX+ >nX, =w}py:.

Summing both sides over n € IN and w # x, we get

Z ZPX{T+ n+1,X, —WXn+1—Z}—Z7rx sz
neN w#x wx

From the definition of %, (z), we can write

= Z Px{rj >n,X,,:z} == Z Z Px{rj 2 n,Xp—1 =w, X, :z}

nelN neNweX
=P{tf >1L.Xo=xXi=z}+ ) Y P{t} >n+1.X, =w X1 =2}.
nelN w#x



The second equality follows from the fact that Xo = x and {Xn =x, ‘L'j >n+ 1} = (. We further observe that
{Xi =z1} 21} = {X; =z}. Therefore, substituting in the previous equation, we get

Z ﬁfx(W)sz = ﬁx(z) - P, {Xl =23 Tj = 1} + Px; = ﬁx(z)-
weX

1.3 Uniqueness of stationary distribution

Recall that distributions 7 on state space X such that 7P = 7 is called a stationary distribution. Similarly, a
function 4 : X — IR is called harmonic at x if

h(x) =) pwh(y).

yeX

A function is harmonic on a subset D C X if it is harmonic at every state x € D. That is, Ph = h for a function
harmonic on the entire state space X.

Lemma 1.7. For a finite irreducible Markov chain, a function f that is harmonic on all states in X is a constant.

Proof. Suppose h is not a constant, then there exists a state xy € X, such that h(xo) > h(y) for all states y € X.
Since the Markov chain is irreducible, there exists a state z € X such that py, . > 0. Let’s assume h(z) < h(xo),
then

h(x()) = pxo,zh(z) + ;pxoa)’h(y) < h()Co).

This implies that /1(xg) = h(z) for all states z such that p,, . > 0. By induction, this implies that any (xo) = h(y)
for any states y reachable from state xy. Since all states are reachable from state xy by irreducibility, this implies A
is a constant on the state space X. O

Corollary 1.8. For any irreducible and aperiodic finite Markov chain, there exists a unique stationary distribution
TT.

Proof. For an aperiodic and irreducible DTMC X : () — X%+ with finite state space X, we have P, { 7,7 < oo} =1
and ]E,;L';r < oo for all states x,y € X. Therefore, we have seen the existence of a positive stationary distribution 7
for an irreducible and aperiodic finite Markov chain. Further, from previous Lemma we have that the dimension
of null-space of (P —1) is unity. Hence, the rank of P— I is |X| — 1. Therefore, all vectors satisfying v = VP are
scalar multiples of 7. O

1.4 Stationary distribution for irreducible and aperiodic finite DTMC

For a finite state irreducible and aperiodic DTMC X : Q) — X%+, we have ]Ex‘c;r < oo and P {’L'y < oo} =1 for all
x,y € X. That is, the return times are finite almost surely, and hence we can apply strong Markov property at these
stopping times to obtain that DTMC X is a regenerative process with delayed renewal sequence 7, (y) : Q) — NN,
where 7" (y) £ 0, and

7 (y) =inf{m>t"  (y): Xm=y}.

Theorem 1.9. The stationary distribution Tt : X — [0, 1] of a finite state irreducible and aperiodic Markov chain
X : Q — X%+, is its invariant distribution.

Proof. We can create an on-off alternating renewal function on this DTMC X, which is ON when in state y. Then,
from the limiting ON probability of alternating renewal function, we know that

. L E 1
m(y) é}}g’x:on{Xk =y} :’}gg;];l Lixe=y} = B

We observe that 7(y) = é‘(f)l for each state y € X. From the uniqueness of invariant distribution, it follows
vy
that 7 is the unique invariant distribution of the DTMC X. We observe that 7(x) is the long-term average of the

amount of time spent in state x and from renewal reward theorem 7(x) = B IT+ . O
X vX




1.5 Transient and recurrent states

The hitting and return times are needed for transience, but invariant distribution is not needed for this. Should it
be taught after periodicity, as a class property?

Definition 1.10. Let f,gl) denote the probability that starting from state x, the first transition into state y happens
at time n. Then,

W =P {5 =n}.

Then we denote the probability of eventually entering state y given that we start at state x, as
n
fo= Y 1) =P {1 <o}
n=1

The state y is said to be transient if f,, < 1 and recurrent if f,, = 1.

Definition 1.11. For a discrete time process X : ) — XZ+, the total number of visits to a state y € X is denoted

by
NE Y Ty

neZ

Remark 2. From the linearity of expectations and monotone convergence theorem, we get EyNy =3, c7 pg).

Lemma 1.12. Then, for each m € IN, we have
P ANy =m} = fii7 (1= fyy).

Further, for initial state x #y, we have

o =5 m=0,
Px {N¥ - m} - {fxy ;]1;71(1 _fyy) m < NN.

Proof. For each k € IN, the time ‘c,j (y) of the kth visit to the state y is a stopping time. From strong Markov
property, the next return to state y is independent of the past. That is, (’L‘,:CH (y) — T,j' (y) 1k € N) is an i.i.d.
sequence, distributed identically to ‘cy“‘ starting from an initial state X, = y. Hence, each return to state y is an i.i.d.
Bernoulli random variable 1 {5, 0)—5F (7)<} with probability fy, = P, {Ty“' < oo}. It follows that the number of
visits y is the time for first failure to return. Conditioned on Xy =y, the distribution of Ny, is geometric random
variable with success probability 1 — fy,.

Conditioned on Xy = x, the event of first visit to y is a Bernoulli random variable 1 {5 (5) <=} with probability

fy- Since 7} (y) is independent of the i.i.d. sequence (7, (y) — 7 (y) : k € N), the second result follows. [

Corollary 1.13. For a homogeneous Markov chain X : Q — X%+, we have P, {Ny < oo} = ]l{f).\,.<1}'

Proof. We can write the event {N, < o} as the disjoint union of events {N, ==n}, to get
P{N,eN} =Y P{Ny=n}= LIFnE
n€N

Remark 3. In particular, this corollary implies the following.
1. A transient state is visited a finite amount of times almost surely.
2. A recurrent state is visited infinitely often almost surely.

3. Since } e Ny = oo, it follows that all states can be transient in a finite state Markov chain.

Proposition 1.14. A state y € X is recurrent iff Y jcN p)(,f') = oo,



Proof. For any state y € X, we can write

P =P (X =y} = Eilix—y-

Using monotone convergence theorem to exchange expectation and summation, we obtain

k
Z Pﬁy) =E, Z Lix,—y} = EyN,.
kelN keIN

()

Thus, Y reN py]; represents the expected number of returns IE,Ny to a state y starting from state y, which we know
to be finite if the state is transient and infinite if the state is recurrent. O

Proposition 1.15. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let x be a recurrent state and let x <> y. Then,
we will show that y is a recurrent state. From the reachability, there exist some m,n > 0, such that p,(c;") > 0 and

(n)

Pyx’ > 0. As a consequence of the recurrence, } ;7 p)((fc) = oo, It follows that y is recurrent by observing

k
Y oow = Y oo s Y plpl) ply) = e,
kEZ+ S€Z+ SEZJr

Now, if x were transient instead, we conclude that y is also transient by the following observation

s
Z (s) < ZSEZ+ p)(fjcn nts) < oo
Py ST Gy ) '
SEZJr pyx pr

Corollary 1.16. Ify is recurrent, then for any state x such that x <y, fr, = 1.



