
Lecture-15: Equilibrium Distribution

1 Invariant distribution
Make it consistent.
Invariant is π = πP, and stationary is π(y) = limn→∞ Px {Xn = y}.

Definition 1.1. For a time-homogeneous Markov chain X : Ω→XZ+ with transition matrix P, a distribution π on
the state space X is called stationary if it is a left eigenvector of the probability transition matrix P with eigenvalue
unity, or

π = πP.

Remark 1. Recall that ν(n) = (νx(n) = P{Xn = x} : x ∈ X) denotes the probability distribution of the Markov
chain X being in one of the states at step n ∈N. Then, if ν(0) = π , then ν(n) = ν(0)Pn = π for all time-steps
n ∈N.

Example 1.2 (Simple random walk on a graph). Let G = (V ,E) be a finite undirected graph, i.e. if
(x,y) ∈ E then (y,x) ∈ E. Then, a simple random walk on this graph is a Markov chain with state space V
and transition matrix P : V ×V → [0,1] where pxy , 1

deg(x)1{(x,y)∈E}. We observe that vector (deg(x) : x ∈X)
is a left eigenvector of the transition matrix P with unit eigenvalue. Indeed we can very that

∑
x∈X

deg(x)pxy = ∑
x∈X

1{(x,y)∈E} = deg(y).

Since ∑x∈X deg(x) = 2|E|, it follows that π : X→ [0,1] defined by πx ,
deg(x)
2|E| for each x ∈V , is the equilib-

rium distribution of this simple random walk.
What would be the equilibrium distribution for the directed graph?

1.1 Hitting and return times
Definition 1.3. For a homogeneous Markov chain X : Ω→ XZ+ , we can define first hitting time to state x ∈ X,
as

τ
+
x , inf{n ∈N : Xn = x} .

If X0 = x, then τ+x is called the first return time to state x.

Lemma 1.4. For an irreducible and aperiodic Markov chain X : Ω→ XZ+ on finite state space X, we have
Exτ+y < ∞ for all states x,y ∈ X.

Proof. From the definition of irreducibility, for each pair of states z,w ∈ X, we have a positive integer nzw ∈N

such that pnzw
zw > εzw > 0. Since the state space X is finite, We define

ε , inf
z,w∈X

εzw > 0, r , sup
z,w∈X

nzw ∈N.

Hence, there exists a positive integer r ∈N and a real ε > 0 such that p(n)zw > ε for some n 6 r and all states
z,w ∈ X. It follows that P∪n∈[r] {Xn = y} > ε or Pz

{
τ+y > r

}
6 1− ε for any initial condition X0 = z ∈ X.

Therefore, we can write for k ∈N

Px
{

τ
+
y > kr

}
= Px

{
τ
+
y > (k−1)r

}
P(
{

τ
+
y > kr

}
|
{

τ
+
y > (k−1)r,X0 = x

}
) 6 (1− ε)Px

{
τ
+
y > (k−1)r

}
.
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By induction, we have Px
{

τ+y > kr
}
6 (1− ε)k. Since Px

{
τ+y > n

}
is decreasing in n, we can write

Exτ
+
y = ∑

k∈Z+

r−1

∑
i=0

Px{τ+y > kr+ i}6 ∑
k∈Z+

rPx{τ+y > kr}6 r
ε
< ∞.

Corollary 1.5. For an irreducible and aperiodic Markov chain X : Ω→ XZ+ on finite state space X, we have
Px
{

τ+y < ∞
}
= 1 for all states x,y ∈ X.

Proof. This follows from the fact that τ+y is a positive random variable with finite mean for all states y ∈ X and
any initial state x ∈ X.

Was periodicity really needed in Lemma 1.4 and Corollary 1.5?

1.2 Existence of stationary distribution
Proposition 1.6. Consider an irreducible and aperiodic homogeneous DTMC X : Ω→XZ+ with transition matrix
P and starting from initial state X0 = x. Let the positive vector π̃x : X→ [0,1] defined as

π̃x(y) , Ex

τ+x

∑
n=1

1{Xn=y} = Ex ∑
n∈N

1{n6τ
+
x }1{Xn=y}, y ∈ X.

Then π̃x = π̃xP if Px
{

τ+x < ∞
}
= 1, and π , π̃x

Exτ
+
x

is a stationary distribution if Exτ+x < ∞.

Proof. We will first show that π̃x is a distribution on state space X. We can write π̃x(y) = Ex ∑
τ+x
n=11{Xn=y}6Exτ+x

for all states y ∈ X. If Exτ+x < ∞, then π̃x(y) < ∞ for each y ∈ X. Further, we have

∑
y∈X

π̃x(y) = ∑
y∈X

τ+x

∑
n=1

1{Xn=y} =
τ+x

∑
n=1

1{Xn∈X} = Exτ
+
x , π̃x(x) = 1.

Since π̃x(y) > 0, it follows that π̃x
Exτ

+
x

is a distribution on the state space X.
We next show that π̃x is an invariant distribution of DTMC X . Using the monotone convergence theorem, we

can write
∑

w∈X
π̃x(w)pwz = ∑

n∈N
∑

w∈X
Px
{

τ
+
x > n,Xn = w

}
Pw {X1 = z} .

Let τ+x be an almost surely finite stopping time for X0 = x. We first focus on the term w = x. We see that{
Xn = x,τ+x > n

}
=
{

τ
+
x = n

}
.

Hence, from the strong Markov property, we have Px
{

Xn = x,Xn+1 = z,τ+x > n
}
= Px

{
τ+x = n

}
pxz. Summing

over all n ∈N, we get

∑
n∈N

Px
{

Xn = x,Xn+1 = z,τ+x > n
}
= pxz ∑

n∈N

Px
{

τ
+
x = n

}
= pxz.

We next focus on the terms w 6= x, such that
{

Xn = w,τ+x > n
}
=
{

Xn = w,τ+x > n+ 1
}

. Hence, from the
Markov property of X , we can write

Px
{

τ
+
x > n+ 1,Xn = w,Xn+1 = z

}
= Px

{
τ
+
x > n,Xn = w

}
P({Xn+1 = z}|

{
Xn = w,τ+x > n,X0 = x

}
)

= Px{τ+x > n,Xn = w}pwz.

Summing both sides over n ∈N and w 6= x, we get

∑
n∈N

∑
w6=x

Px
{

τ
+
x > n+ 1,Xn = w,Xn+1 = z

}
= ∑

w6=x
π̃x(w)pwz.

From the definition of π̃x(z), we can write

π̃x(z) = ∑
n∈N

Px
{

τ
+
x > n,Xn = z

}
= ∑

n∈N
∑

w∈X
Px
{

τ
+
x > n,Xn−1 = w,Xn = z

}
= Px

{
τ
+
x > 1,X0 = x,X1 = z

}
+ ∑

n∈N
∑

w 6=x
Px
{

τ
+
x > n+ 1,Xn = w,Xn+1 = z

}
.
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The second equality follows from the fact that X0 = x and
{

Xn = x,τ+x > n+ 1
}
= /0. We further observe that{

X1 = z,τ+x > 1
}
= {X1 = z}. Therefore, substituting in the previous equation, we get

∑
w∈X

π̃x(w)pwz = π̃x(z)−Px
{

X1 = z,τ+x > 1
}
+ pxz = π̃x(z).

1.3 Uniqueness of stationary distribution
Recall that distributions π on state space X such that πP = π is called a stationary distribution. Similarly, a
function h : X→R is called harmonic at x if

h(x) = ∑
y∈X

pxyh(y).

A function is harmonic on a subset D ⊂ X if it is harmonic at every state x ∈ D. That is, Ph = h for a function
harmonic on the entire state space X.

Lemma 1.7. For a finite irreducible Markov chain, a function f that is harmonic on all states in X is a constant.

Proof. Suppose h is not a constant, then there exists a state x0 ∈ X, such that h(x0) > h(y) for all states y ∈ X.
Since the Markov chain is irreducible, there exists a state z ∈ X such that px0,z > 0. Let’s assume h(z) < h(x0),
then

h(x0) = px0,zh(z)+ ∑
y6=z

px0,yh(y) < h(x0).

This implies that h(x0) = h(z) for all states z such that px0,z > 0. By induction, this implies that any h(x0) = h(y)
for any states y reachable from state x0. Since all states are reachable from state x0 by irreducibility, this implies h
is a constant on the state space X.

Corollary 1.8. For any irreducible and aperiodic finite Markov chain, there exists a unique stationary distribution
π .

Proof. For an aperiodic and irreducible DTMC X : Ω→XZ+ with finite state space X, we have Px
{

τ+y < ∞
}
= 1

and Exτ+y < ∞ for all states x,y ∈ X. Therefore, we have seen the existence of a positive stationary distribution π

for an irreducible and aperiodic finite Markov chain. Further, from previous Lemma we have that the dimension
of null-space of (P− I) is unity. Hence, the rank of P− I is |X|−1. Therefore, all vectors satisfying ν = νP are
scalar multiples of π .

1.4 Stationary distribution for irreducible and aperiodic finite DTMC
For a finite state irreducible and aperiodic DTMC X : Ω→ XZ+ , we have Exτ+y < ∞ and Px

{
τy < ∞

}
= 1 for all

x,y ∈X. That is, the return times are finite almost surely, and hence we can apply strong Markov property at these
stopping times to obtain that DTMC X is a regenerative process with delayed renewal sequence τ+(y) : Ω→NN,
where τ

+
0 (y) , 0, and

τ
+
n (y) = inf

{
m > τ

+
n−1(y) : Xm = y

}
.

Theorem 1.9. The stationary distribution π : X→ [0,1] of a finite state irreducible and aperiodic Markov chain
X : Ω→ XZ+ , is its invariant distribution.

Proof. We can create an on-off alternating renewal function on this DTMC X , which is ON when in state y. Then,
from the limiting ON probability of alternating renewal function, we know that

π(y) , lim
k→∞

Px {Xk = y}= lim
n→∞

1
n

n

∑
k=1

1{Xk=y} =
1

Eyτ
+
y

.

We observe that π(y) = π̃y(y)
Eyτ

+
y

for each state y ∈ X. From the uniqueness of invariant distribution, it follows

that π is the unique invariant distribution of the DTMC X . We observe that π(x) is the long-term average of the
amount of time spent in state x and from renewal reward theorem π(x) = 1

Exτ
+
x

.
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1.5 Transient and recurrent states
The hitting and return times are needed for transience, but invariant distribution is not needed for this. Should it
be taught after periodicity, as a class property?

Definition 1.10. Let f (n)xy denote the probability that starting from state x, the first transition into state y happens
at time n. Then,

f (n)xy = Px
{

τ
+
y = n

}
.

Then we denote the probability of eventually entering state y given that we start at state x, as

fxy =
∞

∑
n=1

f (n)xy = Px
{

τ
+
Y < ∞

}
.

The state y is said to be transient if fyy < 1 and recurrent if fyy = 1.

Definition 1.11. For a discrete time process X : Ω→ XZ+ , the total number of visits to a state y ∈ X is denoted
by

Ny , ∑
n∈Z+

1{Xn=y}.

Remark 2. From the linearity of expectations and monotone convergence theorem, we get EyNy = ∑n∈Z+
p(n)yy .

Lemma 1.12. Then, for each m ∈N, we have

Py
{

Ny = m
}
= f m−1

yy (1− fyy).

Further, for initial state x 6= y, we have

Px
{

Ny = m
}
=

{
1− fxy m = 0,
fxy f m−1

yy (1− fyy) m ∈N.

Proof. For each k ∈N, the time τ
+
k (y) of the kth visit to the state y is a stopping time. From strong Markov

property, the next return to state y is independent of the past. That is, (τ+k+1(y)− τ
+
k (y) : k ∈N) is an i.i.d.

sequence, distributed identically to τ+y starting from an initial state X0 = y. Hence, each return to state y is an i.i.d.
Bernoulli random variable 1{τ

+
k+1(y)−τ

+
k (y)<∞} with probability fyy = Py

{
τ+y < ∞

}
. It follows that the number of

visits y is the time for first failure to return. Conditioned on X0 = y, the distribution of Ny is geometric random
variable with success probability 1− fyy.

Conditioned on X0 = x, the event of first visit to y is a Bernoulli random variable 1{τ
+
1 (y)<∞} with probability

fxy. Since τ
+
1 (y) is independent of the i.i.d. sequence (τ+k+1(y)− τ

+
k (y) : k ∈N), the second result follows.

Corollary 1.13. For a homogeneous Markov chain X : Ω→ XZ+ , we have Py
{

Ny < ∞
}
= 1{ fyy<1}.

Proof. We can write the event
{

Ny < ∞
}

as the disjoint union of events
{

Ny == n
}

, to get

Py
{

Ny ∈N
}
= ∑

n∈N

Py
{

Ny = n
}
= 1{ fyy<1}.

Remark 3. In particular, this corollary implies the following.

1. A transient state is visited a finite amount of times almost surely.

2. A recurrent state is visited infinitely often almost surely.

3. Since ∑y∈X Ny = ∞, it follows that all states can be transient in a finite state Markov chain.

Proposition 1.14. A state y ∈ X is recurrent iff ∑k∈N p(k)yy = ∞.
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Proof. For any state y ∈ X, we can write

p(k)yy = Px {Xk = y}= Ex1{Xk=y}.

Using monotone convergence theorem to exchange expectation and summation, we obtain

∑
k∈N

p(k)yy = Ey ∑
k∈N

1{Xk=y} = EyNy.

Thus, ∑k∈N p(k)yy represents the expected number of returns EyNy to a state y starting from state y, which we know
to be finite if the state is transient and infinite if the state is recurrent.

Proposition 1.15. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let x be a recurrent state and let x↔ y. Then,
we will show that y is a recurrent state. From the reachability, there exist some m,n > 0, such that p(m)

xy > 0 and
p(n)yx > 0. As a consequence of the recurrence, ∑s∈Z+

p(s)xx = ∞. It follows that y is recurrent by observing

∑
k∈Z+

p(k)yy > ∑
s∈Z+

p(m+n+s)
yy > ∑

s∈Z+

p(n)yx p(s)xx p(m)
xy = ∞.

Now, if x were transient instead, we conclude that y is also transient by the following observation

∑
s∈Z+

p(s)yy 6
∑s∈Z+

p(m+n+s)
xx

p(n)yx p(m)
xy

< ∞.

Corollary 1.16. If y is recurrent, then for any state x such that x↔ y, fxy = 1.
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